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Fig. 1: Diverse visual content generated by SyncTweedies: A training-
free, synchronized diffusion process with broad applicability.

Abstract. We introduce a general framework for generating diverse vi-
sual content, including ambiguous images, panorama images, mesh tex-
tures, and Gaussian splat textures, by synchronizing multiple diffusion
processes. We present exhaustive investigation into all possible scenarios
for synchronizing multiple diffusion processes through a canonical space
and analyze their characteristics across applications. In doing so, we re-
veal a previously unexplored case: averaging the outputs of Tweedie’s for-
mula while conducting denoising in multiple instance spaces. This case
also provides the best quality with the widest applicability to down-
stream tasks. We name this case SyncTweedies. In our experiments gen-
erating visual content aforementioned, we demonstrate the superior qual-
ity of generation by SyncTweedies compared to other synchronization
methods, optimization-based and iterative-update-based methods.
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1 Introduction

Image diffusion models [31, 40] have shown unprecedented ability to generate
plausible images that are indistinguishable from real ones. The generative power
of these models stems not only from their capacity to memorize a vast diversity
of potential data but also from being trained on Internet-scale image datasets.

Our goal is to expand the capabilities of pretrained image diffusion mod-
els to produce a wide range of 2D and 3D visual content, including panoramic
images and textures for 3D objects, without the need to train diffusion models
from scratch for each specific visual content. Despite the existence of general
image datasets on the scale of billions [41], collecting other forms of visual data
at this scale is not feasible. Nonetheless, most visual content can be converted
into a regular image of a specific size through certain mappings, such as crop-
ping for panoramic images and rendering for textures of 3D objects. Thus, we
employ such a bridging function between each type of visual content and im-
ages, along with standard image diffusion models like StableDiffusion [40] and
Midjourney [31], to generate a diverse range of visual content.

We introduce a general generative framework that generates data points in
the desired visual content space—referred to as canonical space—by combining
the denoising process of diffusion models in the conventional image space—referred
to as instance spaces. Given the bridging functions connecting the canonical
space and instance spaces, we first explore performing individual denoising pro-
cesses in each instance space while synchronizing them in the canonical space
via the mapping. Another approach is to denoise directly in the canonical space,
although it is not immediately feasible due to the absence of diffusion models
trained on the canonical space. We investigate redirecting the noise prediction
to the instance spaces but aggregating the outputs later in the canonical space.

Depending on the timing of aggregating the outputs of computation in the
instance spaces, we observe five main possible options for the joint denoising
processes—many other options are also feasible but show inferior performance,
as discussed in the supplementary material. Previous works [4, 11, 29] have
investigated each of the possible cases only for specific applications, but none
of them has attempted to analyze and compare them across a range of appli-
cations. For the first time, we analyze all the possible options of joint denois-
ing processes in multiple applications, including ambiguous image generation,
panorama generation, mesh texturing, and Gaussian splatting texturing, and
compare their performance. To this end, we demonstrate that the approach,
which has not been attempted in any previous work, of conducting denoising
processes in instance spaces (not the canonical space) and synchronizing the
outputs of Tweedie’s formula [39] in the canonical space, provides the broadest
applicability across a range of applications and the best performance. We name
this approach SyncTweedies and showcase its state-of-the-art performance in
multiple visual content creation tasks compared with previous methods.

When it comes to generating visual content that can be parameterized into
an image, a notable approach not utilizing joint diffusion is Score Distillation
Sampling (SDS) [35], which has shown particular effectiveness in 3D genera-
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tion and texturing. However, this alternative application of diffusion models has
been observed to produce suboptimal results and also requires a high CFG [17]
weight for convergence, leading to over-saturation. For 3D texture generation,
specifically, an approach that iteratively updates each view image has also been
explored in multiple previous works [8,38]. However, the accumulation of errors
over iterations has been identified as a challenge. We demonstrate that our dif-
fusion synchronization-based approach outperforms these methods in terms of
generation quality across various applications while also achieving faster runtime.

2 Problem Definition
We consider a generative process that samples data within a space we term the
canonical space Z, where a pretrained diffusion model is not provided. Instead,
we leverage diffusion models trained in other spaces called the instance spaces
{Wi}i=1:N , where a subset of the canonical space can be instantiated into each of
them via a mapping: fi : Z → Wi; we refer to this mapping as the projection. Let
gi denote the unprojection, which is the inverse of fi, mapping the instance space
to a subset of the canonical space. We assume that the entire canonical space Z
can be expressed as a composition of multiple instance spaces Wi, meaning that
for any data point z ∈ Z, there exist {wi |wi ∈ Wi}i=1:N such that

z = A ({gi(wi)}i=1:N ) , (1)

where A is an aggregation function that averages the data points from the multi-
ple instance spaces in the canonical space. Our objective is to introduce a general
framework for the generative process in the canonical space by integrating mul-
tiple denoising processes from different instance spaces through synchronization.

3 Joint Diffusion Synchronization
We outline the denoising procedures of representative diffusion models, DDIM [42]
and DDPM [16], and present possible options for joint diffusion processes.

3.1 Denoising Process of DDIM [42] and DDPM [16]

Song et al. [42] have proposed DDIM, a generalized denoising process that
controls the level of randomness during denoising. DDIM [42] is based on non-
Markovian forward processes as follows:

qσt

(
x(t)|x(t−1),x(0)

)
=
qσt

(
x(t−1)|x(t),x(0)

)
q
(
x(t)|x(0)

)
q
(
x(t−1)|x(0)

) , (2)

where σt is a hyperparamter determining the level of randomness, x(0) is a
clean data point, and x(t) is its noise-perturbed data at timestep t. Here, sam-
pling x(t) from x(t−1) takes into account both the current noisy data point
x(t−1) and the original data point x(0). In Equation 2, to satisfy q

(
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)
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)
, following DDPM [16], the posterior of the forward pro-
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)
is chosen as follows:
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When σt = 0 for all t, the denoising process becomes deterministic. Also,
note that the denoising process of DDPM [16] is a special case of DDIM [42]
when σt =

√
(1− αt−1)(1− αt)(1− αt/αt−1).

While x(t−1) can be sampled from the given x(t) and x(0) based on Equa-
tion 3, the original clean data point x(0) is unknown. Thus, it is approximated
using a noise prediction neural network, denoted as ϵθ. Given the noisy data
point x(t), we compute a one-step denoised estimate of x(0) using Tweedie’s
formula [39]:

x(0) ≃ ϕ(t)(x(t), ϵθ(x
(t))) =

x(t) −
√
1− αtϵθ(x(t))
√
αt

. (4)

For simplicity, the time input and condition term in ϵθ are omitted. In short,
each denoising step of DDIM [42] is expressed as follows:

x(t−1) = ψ(t)
σt

(x(t), ϕ(t)(x(t), ϵθ(x
(t)))) + σtϵ, where ϵ ∼ N (0, I). (5)

3.2 Synchronized Joint Denoising Processes

We now explore various scenarios of sampling z ∈ Z by leveraging the composi-
tion of multiple denoising processes in the instance spaces {Wi}i=1:N . Consider
the denoising step of the diffusion model at each time step t in each instance
space Wi:

w
(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i ))) + σtϵ. (6)

A naïve approach to generate data in the canonical space through the denoising
process in instance spaces would be to perform the process independently in each
instance space and then aggregate the generated output in the canonical space at
the end using the averaging function A. However, this approach results in poor
outcomes that lack consistency across outputs in different instance spaces. Hence,
we propose to synchronize the denoising processes at each time step t through the
unprojection operation from each instance space to the canonical space gi and
the aggregation operation A, after which the results will be back-projected via
the projection operation fi to each instance space again. Note that, as described
in Equation 5, the estimated mean ψ(t)

σt (·, ·) of the posterior distribution involves
multiple layers of computations: noise prediction ϵθ(·), Tweedie’s formula [39]
ϕ(t)(·, ·) approximating the final output x(0) each time step, and the final linear
combination ψ(t)

σt (·, ·). Synchronization through the sequence of unprojection gi,
aggregation in the canonical space A, and projection fi can thus be performed
after each layer of these computations, resulting in the following three cases:

Case 1 : w(t−1)
i = ψ

(t)
σt (w

(t)
i , ϕ(t)(w

(t)
i , fi(A({gj(ϵθ(w(t)

j ))}Nj=1)))) + σtϵ
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(a) Instance variable denoising process (b) Canonical variable denoising process
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Fig. 2: Diagrams of joint diffusion processes. The left diagram depicts a joint dif-
fusion process that denoises instance variables {wi} while the right diagram illustrates
a diffusion process that directly denoises a canonical variable z.

Case 2 : w(t−1)
i = ψ

(t)
σt (w

(t)
i , fi(A({gj(ϕ(t)(w(t)

j , ϵθ(w
(t)
j )))}Nj=1)) + σtϵ

Case 3 : w(t−1)
i = fi(A({gj(ψ(t)

σt (w
(t)
j , ϕ(t)(w

(t)
j , ϵθ(w

(t)
j ))))}Nj=1)) + σtϵ.

In each case, we highlight the computation layer to be synchronized in red. The
final outputs w(0)

i are also synchronized at the end through the canonical space.
Another notable approach is to conduct the denoising process directly on the

canonical space:

z(t−1) = ψ(t)
σt

(z(t), ϕ(t)(z(t), ϵθ(z
(t))))) + σtϵ, (7)

although it is not directly feasible because the noise prediction network in the
canonical space ϵθ(z

(t)) is not trained. Nevertheless, it can be achieved by redi-
recting the noise prediction to the instance spaces as follows:

(a) project the intermediate noisy data point z(t) from the canonical space to
each instance space, resulting in fi(z(t)),

(b) apply a subsequence of the operations: ϵθ, ϕ(t), and ψ(t)
σt ,

(c) unproject the outputs back to the canonical space via gi and then average
them using the aggregation function A, and

(d) perform the remaining operations in the canonical space.

Such an approach of performing the denoising process in the canonical space
leads to the following two additional cases depending on the subsequence of
operations at step (b):

Case 4 : z(t−1) = ψ
(t)
σt (z

(t), ϕ(t)(z(t),A({gi(ϵθ(fi(z(t))))}Ni=1)))) + σtϵ

Case 5 : z(t−1) = ψ
(t)
σt (z

(t),A({gi(ϕ(t)(fi(z(t)), ϵθ(fi(z(t)))))}Ni=1)) + σtϵ.

Note the analogy between Case 1 and Case 4, and Case 2 and Case 5 in terms of
the information averaged in the canonical space with the aggregation operator
A: either the outputs of ϵθ(·) or ϕ(t)(·, ·). The following is also a viable option:

z(t−1) = A({gi(ψ(t)
σt

(fi(z
(t)), ϕ(t)(fi(z

(t)), ϵθ(fi(z
(t))))))}Ni=1) + σtϵ. (8)
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but in turn, it is identical to Case 3 except for the initial step particularly when
σt = 0 for all t. The difference between the formulations of the two cases lies in
whether the projection fi is conducted at the end of each denoising step or at
the beginning, resulting in only a distinction in initialization, whether initializing
{w(T )

i }i=1:N or z(T ). We discuss this as Case 6 in the supplementary material.
While it is also feasible to conduct the aggregation A multiple times with the

output of different layers within a single denoising step, and to denoise data both
in instance spaces and the canonical space, we empirically find that such more
convoluted cases perform worse. In the supplementary material, we detail
our exploration of all possible cases and present experimental analyses.

3.3 Connection to Previous Joint Diffusion Methods

Previous research has examined specific cases of the aforementioned possible
joint diffusion processes while focusing on particular applications.

Ambiguous Image Generation. Ambiguous images are images that exhibit
different appearances under certain transformations, such as a 90◦ rotation or
flipping. They can be generated through a joint diffusion process, considering
both the canonical space Z and instance spaces {Wi}i=1:N as the same space
of the image, with the projection operation fi representing the transformation
producing each appearance. Visual Anagrams [11] introduced the idea of gener-
ating ambiguous images using a joint diffusion process adopting Case 4, which
averages the predicted noises ϵθ(·) from each instance space.

Panorama Generation. In panorama generation, the canonical space Z is
the space of the panoramic image, while the instance spaces {Wi}i=1:N are over-
lapping patches across the panoramic image, matching the resolution of the
images that the pretrained image diffusion model can generate. The projection
operation fi corresponds to the cropping operation applied to each patch. Mul-
tiDiffusion [4] and SyncDiffusion [24] introduced panorama generation methods
using Case 6, averaging the mean of the posterior distribution ψ(t)

σt (·).

Mesh Texturing. Given a 3D mesh with texture coordinates, the texture image
of the mesh can also be created by combining denoising processes in 2D images
from various views. This scenario constitutes a case of joint diffusion, where the
texture image space serves as the canonical space Z, and the projective texture
image from each view serves as the instance spaces {Wi}i=1:N . The rendering
from the 3D textured mesh to the 2D image acts as the projection operation fi.
SyncMVD [29] proposed leveraging joint diffusion across the views, using Case
5, which averages the outputs of Tweedie’s formula [39] ϕ(t)(·, ·).

Although previous studies have focused on a single case within a specific
application, in Sections 3.4 and 5, we present comprehensive analyses compar-
ing the different joint diffusion cases across all aforementioned applications and
more. Also, note that the above applications can also be achieved without using
joint diffusion, but through different approaches such as iterative gradient de-
scents [14,22,23,34,35,46] or updating of instance space data points [7,8,10,13,
18,38]. Such related work is further discussed in Section 4.
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Table 1: A quantitative comparison of ambiguous image generation. KID [5]
and GIQA [12] are scaled by 103 and 104, respectively. For each row, we highlight the
column whose value is within 95% of the best.

Projection Metric Case 1 Case 2
SyncTweedies Case 3 Case 4 Case 5

1-to-1
Projection

CLIP-A [36] ↑ 30.35 30.4 30.32 30.35 30.34
CLIP-C [36] ↑ 64.52 64.48 64.49 64.59 64.48

FID [15] ↓ 85.88 86.74 85.69 86.35 86.54
KID [5]↓ 32.37 32.59 32.57 32.41 32.86

GIQA [12] ↑ 21.22 21.23 21.27 21.22 21.22

1-to-n
Projection

CLIP-A [36] ↑ 25.97 30.16 29.94 25.64 30.23
CLIP-C [36] ↑ 54.77 60.86 60.64 54.15 61.01

FID [15] ↓ 232.65 110.51 117.84 257.53 108.22
KID [5] ↓ 216.71 77.16 85.52 257.43 74.48

GIQA [12] ↑ 18.61 20.13 19.68 18.36 20.22

n-to-1
Projection

CLIP-A [36] ↑ 20.33 28.38 21.92 22.14 22.42
CLIP-C [36] ↑ 50.00 60.91 50.28 50.03 51.21

FID [15] ↓ 429.24 106.02 306.21 448.87 245.01
KID [5] ↓ 503.89 47.92 238.81 551.48 175.14

GIQA [12] ↑ 19.04 20.26 22.48 19.31 21.29

Case 1 Case 2
SyncTweedies Case 3 Case 4 Case 5
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1-to-1 Projection, “a photo of {a ship, a dog}”

1-to-n Projection, “an oil painting of {a watering can, a dragon}”

n-to-1 Projection, “a painting of {a car, an airplane}”

Fig. 3: Qualitative comparison of different joint denoising processes. While
all cases perform well in the 1-to-1 projections, Case 1, Case 3 and Case 4 exhibit
degraded performance when a projection is 1-to-n. Notably, SyncTweedies (Case 2)
can be applied to the widest range of projections, including n-to-1 projections.

3.4 Comparison Across the Joint Diffusion Processes

Here, we compare the five cases of joint diffusion processes in Section 3.2 and
analyze their characteristics through various toy experiments.

Toy Experiment Setup: Ambiguous Image Generation. For the toy ex-
periment setup, we employ the task of generating ambiguous images introduced
by Geng et al. [11] (see Section 3.3 for descriptions of ambiguous images).
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We consider two instance spaces: one is identical to the canonical space (with
the identity transformation), and the other is a transformation of the canoni-
cal space, employing one of the 10 transformations used by Geng et al. [11]:
flips, rotations, color inversion, and pixel permutations; all of which are 1-to-1
projections. In our experiments, we use DeepFloyd [9] as the pretrained im-
age diffusion model, and the 95 prompt pairs introduced by Geng et al. [11]
were used for each type of transformation, resulting in a total of 950 generated
ambiguous images.

The quantitative and qualitative results of the five cases of joint diffusion
processes are presented in Table 1 and Figure 3. For detailed information on the
evaluation, refer to the supplementary material. As illustrated, the results
are similar across all joint diffusion processes, indicating that any of those can
be chosen for this specific task.

1-to-n Projection. We further investigate the five cases of joint diffusion pro-
cesses with different transformations for ambiguous images. It is important to
note that all the transformations previously mentioned are perfectly invertible,
meaning: fi(gi(wi)) = wi. However, in certain applications, the projection fi is
often not a function but an 1-to-n mapping, thus not allowing its inverse. For
example, consider generating a texture image of a 3D object while treating the
texture image space as the canonical space and the rendered image spaces as
instance spaces. When mapping each pixel of a specific view image to a pixel in
the texture image in the rendering process—with nearest neighbor sampling, one
pixel in the texture space can be projected to multiple pixels. Hence, the unpro-
jection operation gi cannot be a perfect inverse of the projection fi but can only
be an approximation, making the reprojection error ∥wi−fi(gi(wi))∥ small. We
observe that such a case of having 1-to-n projection fi can significantly impact
the joint diffusion process.

As a toy experiment setup illustrating such a case with ambiguous image
generation, we use rotations with nearest-neighbor sampling as transformations.
We randomly select an angle and rotate an inner circle of the image while leav-
ing the rest of the region unchanged. Due to discretization, rotating an image
followed by an inverse rotation may not perfectly restore the original image.

The second row of Table 1 and Figure 3 present the quantitative and qualita-
tive results of this experiment. Note that the performance of Case 1 and Case 4,
which aggregate the predicted noises ϵθ(·) from either instance variables w(t)

i or
a projected canonical variable fi(z(t)) respectively, significantly declines. Also,
the performance of Case 3, which aggregates the posterior means ψ(t)

σt (·, ·), shows
a minor decline. Case 2 and Case 5, however, remain almost unchanged. This
highlights that the denoising process is highly sensitive to the predicted noise
and to the intermediate noisy data points, while it is much more robust to the
outputs of Tweedie’s formula [39] ϕ(t)(·, ·), the prediction of the final clean data
point at an intermediate stage.

n-to-1 Projection. Then, do the results above conclude that both Case 2 and 5
are suitable for all applications? Lastly, we consider the case when the projection
fi also involves an n-to-1 mapping. Such a scenario can arise when coloring not
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a solid mesh but a neural 3D representation rendered with the volume rendering
equation [20, 21, 32]. Due to the nature of volume rendering, which involves
sampling multiple points along a ray and taking a weighted average of their
information, the projection operation fi includes an n-to-1 mapping. In this case,
Case 5 results in poor outcomes due to a variance decrease issue. Let {xi}i=1:N

be random variables, each sampled from xi ∼ N (µi, σ
2
t I), and x =

∑N
i=1 wixi

be the weighted average, where 0 ≤ wi ≤ 1 and
∑N
i=1 wi = 1. Then, x also

follows the Gaussian distribution:

x ∼ N

(
N∑
i=1

wiµi,

N∑
i=1

w2
i σ

2
t I

)
. (9)

From the triangle inequality [33], the sum of squares is always less than or equal
to the square of the sum:

∑N
i=1 w

2
i ≤ (

∑N
i=1 wi)

2 = 1, implying that the variance
of x is mostly less than the variance of xi. Consequently, when fi includes an n-
to-1 mapping, the variance of w(t)

i , computed as a weighted average over multiple
points in the canonical space, is less than the variance of z(t). Thus, the final
output of Case 5 becomes blurry and coarse since each intermediate noisy latent
in instance spaces w

(t)
i experiences a decrease in variance compared to that of

z(t).
We validate our analysis with another toy experiment, where we use the

same set of transformations used by Geng et al. [11] but with a multiplane
image (MPI) [45] as the canonical space. The image of each instance space is
rendered by first averaging colors in the multiplane of the canonical space and
then applying the transformation. Three planes are used for the multiplane image
representation in our experiments. The results are presented in the third row of
Table 1 and Figure 3. Notably, Case 5 also produces blurry images like the other
cases, whereas Case 2 still generates realistic images.

Table 2 below summarizes suitable cases for each projection type. Note that
Case 2, which has not been attempted in any of the previous works, is the only
case that is applicable to any type of projection function. Since Case 2 involves
averaging the outputs of Tweedie’s formula in the instance spaces, we name this
case SyncTweedies. Experimental results with additional applications are also
demonstrated in Section 5.

Projection Case 1 Case 2
SyncTweedies

Case 3 Case 4 Case 5

1-to-1 ✔ ✔ ✔ ✔ ✔

1-to-n ✗ ✔ ✗ ✗ ✔

n-to-1 ✗ ✔ ✗ ✗ ✗

Table 2: Analysis of joint dif-
fusion processes on projec-
tion operations. SyncTweedies
(Case 2) offers the broadest
range of applications.

4 Related Work

In addition to Section 3.3 introducing previous works on joint diffusion, in this
section, we review other previous works that utilize pretrained image diffusion
models in different ways to generate or edit visual content.
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4.1 Optimization-Based Methods

Poole et al. [35] first introduced Score Distillation Sampling (SDS) technique,
which facilitates data sampling in a canonical space by leveraging the loss func-
tion of the diffusion model training and conducting gradient descent in each
instance space. This idea, originally introduced for 3D generation [26, 44, 46],
has been widely applied to various applications, including vector image genera-
tion [19], ambiguous image generation [6], mesh texturing [48], mesh deforma-
tion [47], and 4D generation [3, 27]. Subsequent works [14, 22, 23] also proposed
modified loss functions not to generate data but to edit existing data while
preserving their identities. This approach, exploiting diffusion models not for
denoising but for gradient-descent-based iterative updating, generally produces
less realistic outcomes compared to denoising-based generation results, while also
taking much more time.

4.2 Iterative View Updating Methods

Particularly for 3D object/scene texturing and editing, there are approaches
to iteratively update each view image and subsequently update the 3D ob-
ject/scene. TEXTure [38], Text2Tex [8], and TexFusion [7] are previous works
that repeatedly generate a projective texture from each view and unproject it
onto the 3D mesh for texture updating. Notably for NeRF editing, Instruct-
NeRF2NeRF [13] proposed to edit a NeRF scene by iteratively replacing each
view image used in the NeRF optimization and then updating the NeRF model.
However, sequentially updating the canonical sample leads to error accumula-
tions, resulting in blurriness or inconsistency across different views.

In Section 5.2 and 5.3, we compare our synchronized joint diffusion processes
with the aforementioned techniques in 3D mesh and 3D Gaussian splat tex-
turing, demonstrating the superior quality of joint diffusion processes with fast
computational speed.

5 Applications

In this section, we present quantitative and qualitative results of different joint
diffusion processes on various applications, including depth-to-360-panorama
generation (Section 5.1), 3D mesh texturing (Section 5.2) and 3D Gaussian
splat [21] texturing (Section 5.3). Following the toy experiments described in
Section 3.4, we compare the five cases of joint diffusion processes introduced in
Section 3.2, along with optimization-based methods and iterative-update-based
methods introduced in Section 4.

Refer to Section 3.3 for the detailed definition of the canonical space Z, the
instance spaces {Wi}i=1:N , the projection operation fi, and the unprojection
operation gi in each application. Please refer to the supplementary material
for additional detailed experiments and more comprehensive experiment setups,
including: (1) 360◦ rendering videos of textured 3D meshes and 3D Gaussian
splats, (2) results of orthographic panorama generation, (3) a comparison of
computation times, and (4) implementation details of each application.
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Evaluation Setup. Across all the following applications, we compute FID [15],
KID [5] and GIQA [12] to assess the fidelity of the generated images. Addi-
tionally, we measure CLIP similarity [36] (CLIP-S) to evaluate conformity to
the input text prompt. We use a depth-conditioned ControlNet [49] as the pre-
trained image diffusion model.

Metric Case 1 Case 2
Sync-

Tweedies

Case 3 Case 4 Case 5

FID [15] ↓ 364.61 42.11 55.95 348.18 43.39
KID [5] ↓ 375.42 21.19 34.67 362.77 22.87

GIQA [12] ↑ 18.16 24.25 23.85 18.93 24.12
CLIP-S [36] ↑ 19.75 28.01 27.19 19.93 27.99

Table 3: A quantitative com-
parison in a Depth-to-360-
Panorama application. KID
and GIQA are scaled by 103

and 104, respectively. The best in
each row is highlighted by bold.

“an old looking library” “a house at night”

Input
Depth

Case 1

Case 2
Synctweedies

Case 3

Case 4

Case 5

Fig. 4: Qualitative results of 360◦ panorama generation. SyncTweedies (Case
2) and Case 5 generate consistent and high-fidelity 360◦ panorama images as observed
in the 1-to-n projection experiment in Section 3.4. Case 1 and Case 4 fail to generate
meaningful 360◦ panorama images, while Case 3 tends to lose details.

5.1 Depth-to-360-Panorama
We generate 360◦ panorama images from input 360◦ depth maps obtained from
360MonoDepth [37] dataset. Here, the projection operation fi is a perspective
transformation from the 360◦ panorama canvas to a perspective view image,
which is an 1-to-n projection due to the discretization. We generate a total of
1,000 360◦ panorama images at 0◦ elevation, and a field of view of 72◦.

Results. We report quantitative and qualitative results of the five joint dif-
fusion processes discussed in Section 3.2 in Table 3 and Figure 4, respectively.
Table 3 demonstrates a trend consistent with the 1-to-n projection toy experi-
ment results shown in Section 3.4. Specifically, SyncTweedies (Case 2) and Case
5, which synchronize the outputs of Tweedie’s formula ϕ(t)(·, ·), exhibit the best
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Table 4: A quantitative comparison in a 3D mesh texturing application. KID
and GIQA are scaled by 103 and 104, respectively. The best in each row is highlighted
by bold.

Metric Joint Diffusion Optim.
-Based

Iter. View
Updating

Case 1 Case 2
SyncTweedies

Case 3 Case 4 Case 5 Paint-it
[48]

TEXTure
[38]

Text2Tex
[8]

FID [15] ↓ 135.61 21.76 36.12 131.67 22.76 28.23 34.98 26.10
KID [5] ↓ 68.63 1.46 6.60 65.70 1.74 2.30 6.83 2.51

GIQA [12] ↑ 21.13 34.91 30.18 21.20 34.07 31.50 28.91 31.43
CLIP-S [36] ↑ 25.26 28.89 27.88 25.31 28.82 28.55 28.63 27.94

Prompt
Joint Diffusion Optim.

-Based
Iter. View
Updating

Case 1 Case 2
Sync-

Tweedies

Case 3 Case 4 Case 5 Paint-it
[48]

TEXTure
[38]

Text2Tex
[8]

Fig. 5: 3D mesh texturing qualitative result. SyncTweedies (Case 2) and Case
5 exhibit comparable results, outperforming other baselines. The optimization-based
method shows view inconsistency, while iterative-update-based methods generates im-
ages without fine details.

performance. Notably, SyncTweedies (Case 2) demonstrates slightly superior
performance across all metrics. In Figure 4, we observe that Case 1 and Case 4,
which aggregate the predicted noise ϵθ(·), produce noisy outputs. Case 3 yields
suboptimal 360◦ panorama images, characterized by a monochromatic appear-
ance and lack of details. SyncTweedies (Case 2) and Case 5 demonstrate the
best results aligning with the input depth image, with SyncTweedies (Case 2)
showing a slightly better alignment as indicated by the red arrow in Figure 4.

5.2 3D Mesh Texturing

In 3D mesh texturing, projection operation fi is a rendering function which
outputs perspective view images from a 3D mesh with a texture image. This
operation represents a 1-to-n projection due to discretization. We evaluate five
joint diffusion cases along with Paint-it [48], an optimization-based method,
and TEXTure [38] and Text2Tex [8], which are iterative-update-based methods.
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This evaluation is conducted on a dataset comprising 429 mesh and prompt pairs
collected from TEXTure [38] and Text2Tex [8].

Results. We present quantitative and qualitative results in Table 4 and Fig-
ure 5, respectively. The results in Table 4 align with the observations made in
the 1-to-n projection case discussed in Section 3.4. Quantitatively, SyncTweedies
(Case 2) and Case 5 outperform other baselines across all metrics, but our pro-
posed method demonstrates superior performance compared to Case 5. Notably,
our method shows superior performance to optimization-based and iterative-
update-based methods.

In Figure 5, SyncTweedies (Case 2) and Case 5 generate most realistic output
images. The optimization-based method [48] shows inconsistencies across views,
as evidenced by artifacts such as fragmented fingers on baseball gloves in row
1 and distorted front bumpers of a car in row 2. The iterative-update-based
methods [8, 38] produce blurry images lacking fine details, noticeable in the
screens of the iPod and the laptop in rows 3 and 4, respectively.

Metric Joint Diffusion Optim.
Based

Iter. View.
Updating

Case 2
Sync-

Tweedies

Case 5 SDS
[35]

IN2N
[13]

FID [15] ↓ 100.13 108.99 119.56 109.65
KID [5] ↓ 13.67 15.36 22.78 15.73

GIQA [12] ↑ 27.87 26.16 25.72 26.98
CLIP-S [36] ↑ 29.44 28.92 30.15 29.25

Table 5: A quantitative com-
parison of texturing 3D
Gaussian splats. KID and
GIQA are scaled by 103 and 104,
respectively. The best in each
row is highlighted by bold.

Fig. 6: Qualitative results of texturing 3D Gaussian splats. Case 5 tends to lose
details due to the variance decrease issue, whereas SyncTweedies (Case 2) generates
realistic images by avoiding this issue. The optimization-based method [35] produces
high-contrast, colors and the iterative view updating method [13] yields suboptimal
outputs due to error accumulation.

Prompt Ground Truth Joint Diffusion Optim.-Based Iter. View.
Updating

Case 2
SyncTweedies

Case 5 SDS [35] IN2N [13]

“A tree with
multicolored

leaves”

“Wooden carving
of a microphone”

“Wooden carving
of a ship”
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5.3 3D Gaussian Splat Texturing

Lastly, to verify the difference between Case 2 (SyncTweedies) and Case 5,
both of which demonstrate applicability up to 1-to-n projections as outlined in
Section 3.4, we explore texturing 3D Gaussian splats [21], exemplifying an n-
to-1 projection case. In 3D Gaussian splats texturing, the projection operation
fi is an n-to-1 case, characterized by a volumetric rendering function [20]. This
function computes a weighted sum of n 3D Gaussians splats in the canonical
space to render a pixel in the instance space.

While recent 3D generative models [43,44] generate plausible 3D objects rep-
resented as 3D Gaussian splats, they often lack fine details in the appearance. We
validate the effectiveness of SyncTweedies (Case 2) on pretrained 3D Gaussian
splats [21] trained on multi-view images from the Synthetic NeRF dataset [32].
We use 50 views for texture generation and evaluate the results from 150 un-
seen views. For baselines, we evaluate SyncTweedies (Case 2) with Case 5, the
optimization-based method SDS [35], and the iterative-update-based method
Instruct-NeRF2NeRF (IN2N) [13]. We only include SyncTweedies (Case 2) and
Case 5 from joint diffusion processes since they are shown to be the most robust
cases against different projections as discussed in Section 3.4.

Results. Table 5 presents a quantitative comparison of 3D Gaussian splat [21]
texturing, and Figure 6 shows qualitative results. SyncTweedies (Case 2), un-
affected by the variance decrease issue, outperforms Case 5, as observed in the
toy experiments in Section 3.4. When compared to other baselines based on
optimization (SDS [35]) and iterative view updating (IN2N [13]), our method
outperforms across most metrics, especially by a large margin in FID [15].

Figure 6 demonstrates that SyncTweedies (Case 2) generates high-fidelity
results with intricate details, such as the colorful leaves of the tree in row 1,
while Case 5 produces monochromatic images. SDS [35] results in artifacts char-
acterized by high saturation as the body of the microphone in row 2. IN2N [13]
fails to preserve fine details, such as the carvings of a ship in row 3.

6 Conclusion and Future Work
We have explored various scenarios for synchronizing multiple denoising pro-
cesses and evaluated their performance across a range of applications, including
ambiguous image generation, panorama generation, 3D mesh texturing, and 3D
Gaussian splats texturing. Through this investigation, we have demonstrated
that the approach named SyncTweedies, which averages the outputs of Tweedie’s
formula while conducting denoising in multiple instance spaces, offers the best
performance and widest applicability.

Despite the best performance of SyncTweedies across the synchronization
cases, averaging the outputs of Tweedie’s formula may still lead to performance
degradation. This limitation could be addressed by fine-tuning a model on a
small scale dataset. Furthermore, we aim to delve deeper into the potential of
synchronized denoising processes across a broader spectrum of applications with
data modalities such as audio, video, human motions, and others.
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Appendix

A1 Experiment Details

In this section, we provide details of the experiments discussed. For all joint
denoising processes, we use a fully deterministic DDIM [42] sampling with 30
steps. In the case of instance variable denoising processes introduced in Sec-
tion 3.2 (Cases 1 to Case 3), we initialize instance variables by projecting an
initial canonical latent z(T ) sampled from a unit Gaussian distribution N (0, I):
w

(T )
i ← fi(z

(T )). For n-to-1 projection cases, the instance variables are directly
initialized from a unit Gaussian distribution to avoid the variance decrease issue
discussed in Section 3.4.

As described in Section 3.4 and Section 5, we use DeepFloyd [9] as the pre-
trained diffusion model for the ambiguous image generation which denoises im-
ages in the RGB space. For the depth-to-360-panorama generation, 3D mesh
texturing, and 3D Gaussian splat texturing, we employ a pretrained depth-
conditioned ControlNet [49] which is based on a latent diffusion model, specifi-
cally Stable Diffusion [40]. For applications utilizing ControlNet, synchronization
during the intermediate steps of joint denoising processes occurs within the same
latent space, except for 3D Gaussian splat texturing. In the case of 3D Gaus-
sian splat texturing, synchronization takes place in the RGB space, and detailed
explanations are provided in Section A1.4.

At the end of the joint denoising processes, we perform the final synchroniza-
tion in the RGB space using the decoded instance variables across all applica-
tions.

Evaluation Metrics. For all applications, we evaluate diversity and fidelity
of the generated images using FID [15] and KID [5]. Additionally, we measure
GIQA [12] to assess the fidelity of individual generated images. These metrics
compute scores based on the distance between the distribution of the generated
image set and that of the reference image set, with the reference set forming the
target distribution. Refer to each application section for detailed description of
constructing the generated image set and the reference image set.

To evaluate the text alignment of the generated images, we report CLIP sim-
ilarity score [36] (CLIP-S) which measures the similarity between the generated
images w

(0)
i and their corresponding text prompts pi in CLIP [36] embedding

space. Additionally, in the ambiguous image generation, we report CLIP align-
ment score (CLIP-A) and CLIP concealment score (CLIP-C) following previous
work, Visual Anagrams [11]. To compute the metrics, we begin by calculating
a CLIP similarity matrix S ∈ RN×N from N pairs of transformations and text
prompts:

Sij = Eimg(fi(z
(0)))TEtext(pj), (10)

where Eimg(·) and Etext(·) are the image encoder and the text encoder of the
pretrained CLIP model [36], respectively. CLIP-A quantifies the worst alignment
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among the corresponding image-text pairs, specifically computed as min diag(S).
However, this metric does not account for misalignment failure cases, where pi
is visualized in w

(0)
j for i ̸= j. CLIP-C considers alignment of an (a) image

(prompt) to all prompts (images) by normalizing the similarity matrix S with a
softmax operation:

1

N
tr(softmax(S/τ)), (11)

where tr(·) denotes the trace operator, and τ = 0.07 is the temperature param-
eter of CLIP [36].

A1.1 Details on Ambigous Image Generation — Section 3.4

We present the details of the ambiguous image generation experiments in Sec-
tion 3.4. Quantitative and qualitative results are presented in Table 1 and Fig-
ure 3.

Evaluation Setup. To evaluate the fidelity of the generated images using FID,
KID, and GIQA, we create a reference set consisting of 5,000 generated images
from Stable Diffusion 1.5 [40] with the same text prompts used in the generation
of ambiguous images.

Implementation Details We use DeepFloyd [9] which is a two-stage cascaded
diffusion model. In the first stage, we generate 64× 64 images that are upscaled
to 256× 256 images in the subsequent stage.

Definition of Operations. In the context of ambiguous image generation,
both the instance variables {wi}i=1:N and canonical variables z share the same
image space. However, instance variables exhibit different appearances from the
canonical variable upon applying certain transformations.

In the 1-to-1 projection case, we use the 10 transformations used in Visual
Anagrams [11], all of which are 1-to-1 mappings. The projection operation fi is
defined as the transformation itself, and the unprojection operation gi is defined
as the inverse of the transformation matrix.

In the scenario of 1-to-n projection, we employ inner circle rotation as the
projection operation fi. This involves rotating the pixels within an inner circle of
an image while keeping the outer pixels unchanged. The unprojection operation
gi is the inverse of fi. We use 14 inner circle rotation transformations, with
rotation angles evenly spaced in the range [45◦, 175◦]. For evaluation, we utilize
the same 95 prompts as in the 1-to-1 case for each transformation, generating
14 × 95 = 1, 350 ambiguous images. After applying a rotation transformation,
the grid of the rotated image does not align with the original image grid. Thus,
we use the nearest-neighbor sampling to retrieve pixel colors from the original
image to the rotated image. This sampling process leads to a scenario where
a single pixel in the original image z can be mapped to multiple pixels in the
rotated image wi, which is a 1-to-n mapping.

For n-to-1 projection, we use the same transformations and text prompts as
in the 1-to-1 projection experiment, thus resulting in a total of 10 × 95 = 950
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ambiguous images. The only difference from the 1-to-1 projection experiment
is that the canonical space variable z is now represented as multiplane images
(MPI) [45], where a collection of planes {pj}j=1:M represents a single canonical
variable. Specifically, we compute z by averaging the multiplane images: z =
1
M

∑M
j=1 pj . In the context of n-to-1 projection, we substitute the sequence of the

unprojection gi and the aggregation A operation with an optimization process.
The multiplane images pj are optimized using the following objective function:

min
{pj}

N∑
i

∣∣∣∣∣∣fi
 1

M

M∑
j=1

pj

−wi

∣∣∣∣∣∣ , (12)

where the number of planes M = 3.

A1.2 Details on Depth-to-360-Panorama Generation — Section 5.1

We provide details of the Depth-to-360-Panorama generation experiments pre-
sented in Section 5.1. Refer to Table 3 and Figure 4 for quantitative and quali-
tative results.

Evaluation Setup. We evaluate SyncTweedies and the baseline methods on
1,000 pairs of 360◦ panorama images and depth maps randomly sampled from
360MonoDepth [37] dataset. For each 360◦ panorama image, we generate a text
prompt using the output of BLIP [25] by providing a perspective view image of
the panorama as input.

In the 360◦ panorama generation, we use eight perspective views by evenly
sampling azimuths with 45◦ intervals at 0◦ elevation. Each perspective view has
a field of view of 72◦. For evaluation, we project the generated 360◦ panorama
image to ten perspective views with randomly sampled azimuths at 0◦ elevation
and a field of view of 60◦. Similarly, the reference set images are obtained by
projecting each ground truth 360◦ panorama image into ten perspective views
with azimuths randomly sampled and at 0◦ elevation. In total, we use 1, 000 ×
10 = 10, 000 perspective view images for evaluation.

Implementation Details. We set the resolution of a latent panorama image
to 2,048 × 4,096 and that of the latent perspective view images to 64 × 64.
In the RGB space, a panorama image has a resolution of 1,024 × 2,048, and
perspective view images have a resolution of 512 × 512.

We adopt two approaches introduced in SyncMVD [29], Voronoi-diagram-
based filling [2] and modified self-attention layers. First, the high resolution of
the latent panorama image results in panorama images with sparse pixel distri-
bution. To address this issue, we propagate the unprojected pixels to the visible
regions of the panorama using the Voronoi-diagram-based filling. Second, spa-
tially distant views tend to generate inconsistent outputs. Therefore, we adopt
the modified self-attention mechanism that attends to other views when com-
puting the attention output.
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Definition of Operations. In the 360◦ panorama generation, the canoni-
cal variable z represents a 360◦ panorama image, while the instance variables
{wi}i=1:N correspond to perspective views of the panorama. The mappings be-
tween the panorama image and the perspective views are computed as follows:
First, we unproject the pixels of the perspective view image to the 3D space.
Then, we apply two rotation matrices based on the azimuth and elevation angles.
The pixels are then reprojected onto the surface of a unit sphere, represented
as longitudes and latitudes. These spherical coordinates are finally converted to
2D coordinates on the panorama image.

Given the mappings, the projection operation fi samples colors from the
panorama image using the nearest-neighbor method. Since a single pixel of a
panorama image z can be mapped to multiple pixels of a perspective view image
wi, the 360◦ panorama generation is a 1-to-n projection case, as discussed in
Section 3.4.

A1.3 Details on 3D Mesh Texturing — Section 5.2

We provide details of the 3D mesh texturing experiments presented in Sec-
tion 5.2. Quantitative and qualitative results are shown in Table 4 and Figure 5.

Evaluation Setup. We use 429 mesh and prompt pairs collected from pre-
vious works, TEXTure [38] and Text2Tex [8]. For texture generation, we use
eight views sampled around the object with 45◦ intervals at 0◦ elevation. Two
additional views are sampled at 0◦ and 180◦ azimuths with 30◦ elevation. For
evaluation, we render a 3D mesh to ten perspective views with randomly sam-
pled azimuths at 0◦ elevation, resulting 10 × 429 = 4,290 images. Following
SyncMVD [29], the reference set images are generated by ControlNet [49] using
the same depth maps and text prompts used in the texture generation.

Implementation Details. As done in the 360◦ panorama generation, we apply
the Voronoi-diagram-based filling after each unprojection operation and employ
the modified self-attention mechanism. The resolution of the latent texture image
is 1, 536 × 1, 536, and that of the latent perspective view images is 96 × 96. In
the RGB space, the resolution of the texture image is 1, 024× 1, 024 and that of
the perspective view images is 768× 768.

Definition of Operations. In the 3D mesh texturing, the canonical variable
z is the texture image of a 3D mesh, and the instance variables {wi}i=1:N are
rendered images from the 3D mesh. The projection operation fi is a rendering
function where nearest-neighbor sampling is utilized to retrieve the color from
the texture image to perspective view images.

As done in the n-to-1 projection case in Section A1.1, we replace the unpro-
jection gi and aggregation A operation to an optimization process. This process
optimizes the texture image z using the multi-view images wii = 1 : N . In the
3D mesh texturing, one pixel in the texture image z can be mapped to multiple
pixels in a rendered image wi. Hence, this application corresponds to the 1-to-n
projection case as in Section 3.4.
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A1.4 Details on 3D Gaussian Splat Texturing — Section 5.3

We provide details of the 3D Gaussian splat texturing experiment presented in
Section 5.3. Quantitative and qualitative results are provided in Table 5 and
Figure 6.

Evaluation Setup. For evaluation, we use pretrained 3D Gaussian splats
trained with multi-view images from the Synthetic NeRF dataset [32], consist-
ing of 8 objects. We generate 40 textured 3D Gaussian splats by utilizing five
different prompts per 3D object. We use 50 views for texture generation and 150
unseen views for evaluation.

Implementation Details. As described in Section A1, we employ Control-
Net [49] which denoises latent images. To render the latent images, we replace
the spherical harmonics coefficients of a 3D Gaussian splat to a 4-channel latent
vector.

Additionally, we empirically observe that 3D Gaussian splats optimized in the
RGB space yield better results than those optimized in the latent space. Hence,
SyncTweedies optimizes 3D Gaussian splats in the RGB space by decoding the
outputs of the Tweedie’s formula. However, this approach cannot be extended
to other cases that i) do not synchronize the outputs of ϕ(·, ·) and ii) compute
ψ(·, ·) in the canonical space. For this reason, we optimize 3D Gaussian splats
in the latent space for Case 5.

Definition of Operations. The canonical variables {zj}j=1:M are 3D Gaus-
sian splats and the instance space variables {wi}i=1:N are the rendered images
from the 3D Gaussian splats. The projection operation fi is a volume rendering
function [20,21] where the colors (latent vectors) of multiple 3D Gaussian splats
are composited to render a pixel. This corresponds to the n-to-1 projection as
discussed in Section 3.4. In 3D Gaussian splat texturing, the colors of 3D Gaus-
sian splats z = {sj}j=1:M are optimized from multi-view images {wi}i=1:N as
in the n-to-1 experiment in Section 3.4.

A2 Orthographic Panorama Generation

In addition to the 1-to-1 projection case presented in Section 3.4, we present
orthographic panorama generation. In contrast to the 360◦ panorama genera-
tion which corresponds to the 1-to-n projection case, orthographic panorama
generation involves 1-to-1 projection.

Evaluation Setup. In orthographic panorama generation, we use Stable Diffu-
sion 2.0 [40] as the pretrained diffusion model. We evaluate the five joint diffusion
cases discussed in Section 3.2, Case 1 to Case 5, using the six text prompts col-
lected from SyncDiffusion [24]. For quantitative evaluation, we report the four
metrics used in the main paper: FID [15], KID [5], GIQA [12], and CLIP-S [36].

Following SyncDiffusion [24], we generate 500 panorama images per prompt
with 512 × 3, 072 resolution, resulting in 500 × 6 = 3, 000 panorama images.
For evaluation, we randomly crop a partial view of the panorama image with
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Table A6: A quantitative comparison of orthographic projection panorama.
KID and GIQA are scaled by 103. For each row, we highlight the column whose value
is within 95% of the best.

Metric Case 1 Case 2
SyncTweedies

Case 3 Case 4 Case 5

FID [15] ↓ 32.83 32.82 32.83 32.82 32.83
KID [5] ↓ 7.79 7.79 7.79 7.79 7.80

GIQA [12] ↑ 28.40 28.40 28.40 28.41 28.40
CLIP-S [36] ↑ 31.69 31.69 31.69 31.69 31.69

512× 512 resolution. Similarly, 3, 000 reference images with 512× 512 resolution
are generated from the pretrained diffusion model using the same text prompts.

Implementation Details. Following SyncDiffusion [24], we use a determin-
istic DDIM [42] sampler with 50 denoising steps. The resolution of the latent
panorama image is 64× 384 and that of the latent images is 64× 64. The final
panorama image has a resolution of 512× 3, 072, and each cropped image has a
resolution of 512× 512.

Definition of Operations. While both the 360◦ panorama generation de-
scribed in Section 5.1 and orthographic panorama generation involve the merging
of multiple window images, orthographic panorama generation does not account
for perspective projection. Instead, it crops a partial view of the panorama image
without considering the perspective distortion.

Note that the grid of the panorama image z and the window images {wi}i=1:N

are perfectly aligned. Hence, this corresponds to the 1-to-1 projection case dis-
cussed in Section 3.4 of the main paper.

Result. We report quantitative results in Table A6 and qualitative results in
Figure A7. The quantitative results align with the observations shown in the 1-
to-1 experiment in Section 3.4, where all cases show comparable performances.
This is further supported by the results in Figure A7, where all cases exhibit
similar panorama images, suggesting that any of the options can be used when
the projection is 1-to-1.
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“A photo of a city skyline at night”

Case 1

Case 2
SyncTweedies

Case 3

Case 4

Case 5

“A photo of a forest with a misty fog”

Case 1

Case 2
SyncTweedies

Case 3

Case 4

Case 5

Fig.A7: Qualitative results of orthographic projection panorama genera-
tion. All baselines show comparable results in the 1-to-1 projection.
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Generated 3D mesh [1] Edited 3D mesh (SyncTweedies)

“A nascar” “A car with graffiti”

“A lantern” “A Chinese style lantern”

“A turtle” “A golden statue of a turtle”

Fig.A8: Qualitative results of 3D mesh texture editing. We edit the textures
of the 3D meshes generated from Genies [1] using SyncTweedies.

A3 3D Mesh Texture Editing

In this section, we extend the 3D mesh texture generation in Section 5.2, and
present texture editing application.

Despite the recent successes of 3D generation models [1, 28], the textures of
the generated 3D meshes often lack fine details. We utilize SyncTweedies to
edit the textures of the generated 3D meshes, and enhance the texture quality.
Specifically, we use the 3D meshes generated from a text-to-3D model, Genie [1].

We follow SDEdit [30] to edit the textures of the 3D mesh. We begin by
adding noise at intermediate time t′ to the texture image of the 3D mesh, and
take a reverse process starting from the same intermediate time t′.

Implementation Details. We set the CFG weight [17] to 30 and t′ to 0.8. For
other settings, we follow the 3D mesh texture generation experiment presented
in Section 5.2.

Results. We present qualitative results of 3D mesh texture editing in Figure A8.
The 3D meshes edited with SyncTweedies exhibit fine details, including graffiti
on the car in row 1, paintings on the lantern in row 2, and the intricate shells of
the turtle in row 3.
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Table A7: A runtime comparison in 3D mesh texturing and 3D Gaussian
splat texturing applications. The best in each row is highlighted by bold.

Metric Joint Diffusion Optim.
-Based

Iter. View
Updating

Runtime
(minutes) ↓

3D Mesh Texturing
Case 2

SyncTweedies
Paint-it

[48]
TEXTure

[38]
Text2Tex

[8]
1.83 21.95 1.54 13.10

3D Gaussian Splats Texturing
Case 2

SyncTweedies
SDS
[35]

IN2N
[13]

10.56 85.50 37.93

A4 Runtime Comparison

As discussed in Section 4, one of the advantages of joint diffusion processes is the
fast computational speed. We compare the runtime performance of SyncTweedies
with optimization-based and iterative-update-based methods in the 3D mesh
texturing and the 3D Gaussian splat texturing. The quantitative results are
presented in Table A7.

In the 3D mesh texturing, SyncTweedies shows faster computation times
than other baselines except TEXTure [38] which shows comparable running time.
However, TEXTure [38] generates suboptimal texture outputs as observed in Ta-
ble 4 and Figure 5. While another iterative-update-based method, Text2Tex [8],
improves quality of texture image by integrating an additional refinement mod-
ule, it introduces additional overhead in terms of running times. In contrast,
SyncTweedies achieves running times that are 7 times faster than Text2Tex and
even outperforms across all metrics as shown in Table 4. Lastly, SyncTweedies
shows 11 times faster running time when compared to Paint-it [48], an optimization-
based method.

In the 3D Gaussian splats texturing, SyncTweedies achieves the fastest
running time. SyncTweedies is 3 times faster than the iterative-update-based
method IN2N [13], and 8 times faster than the optimization-based method,
SDS [35]. This shows that SyncTweedies not only generates high-fidelity tex-
tures, but also excels other baselines in computational speed.
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(c) Instance variable denoising trajectory 2 (d) Canonical variable denoising trajectory 2

(a) Instance variable denoising trajectory 1 (b) Canonical variable denoising trajectory 1

(e) Instance variable denoising trajectory 3 (f) Canonical variable denoising trajectory 3

(g) Instance variable denoising trajectory 4 (h) Canonical variable denoising trajectory 4

Fig.A9: Diagrams of joint diffusion processes. All feasible trajectories of the
instance variable denoising process (left) and the canonical variable denoising process
(right). Each row shares the same trajectory with different variables denoised.



28 J. Kim, J. Koo, K. Yeo et al.

A5 Analysis of Joint Diffusion Processes

As outlined in Section 1, we present a comprehensive analysis of all possible joint
denoising processes, including the representative five joint denoising processes
introduced in Section 3.2. Following the main paper, we categorize joint denoising
processes into two types: the instance variable denoising process, where instance
variables {w(t)

i } are denoised, and the canonical variable denoising process, which
denoises a canonical variable z(t) directly. Unlike the representative cases, other
all feasible cases either take inconsistent inputs when computing ϵθ(·), ϕ(t)(·, ·)
and ψ

(t)
σt (·, ·) or conduct the aggregation A multiple times. Additionally, for a

more exhaustive analysis in this supplementary document, we introduce another
type of joint denoising processes, named the combined variable denoising process,
which denoises {w(t)

i } and z(t) together.
We present a total of 46 feasible cases for the instance variable denoising

process, 8 for the canonical variable denoising process, and an additional 6 rep-
resentative cases for the combined variable denoising process. We provide in-
stance variable denoising cases in Section A5.2, and canonical variable denoising
cases in Section A5.3. Additionally, the six representative cases for the combined
variable denoising process are detailed in Section A5.4.

We conduct a quantitative comparison of all listed cases following the experi-
ment setup outlined in Section 3.4, and the results are presented in Section A5.5.

A5.1 Overview

We provide the representative trajectories in Figure A9, where (a)-(b), (c)-(d),
(e)-(f), and (g)-(h) follow the same trajectory but differ in the denoising variable,
either instance or canonical, respectively. In each denoising case, there are 22 = 4

possible trajectories determined by whether ϕ(t)(·, ·) and ψ(t)
σt (·, ·) are computed

in the canonical space or instance space. This is because among the three com-
putation layers—ϵθ(·), ϕ(t)(·, ·) and ψ

(t)
σt (·, ·)—only the last two operations can

be computed in both the canonical space and the instance space unlike noise
prediction which is only available in the instance space. Table A8 summarizes
the computation spaces of ϕ(t)(·, ·) and ψ(t)

σt (·, ·), along with their corresponding
trajectories.

Table A8: Computation space of ϕ(t)(·, ·) and ψ
(t)
σt (·, ·) for each trajectory.

Trajectory ϕ(t)(·, ·)
Computation space

ψ(t)
σt

(·, ·)
Computation space

Trajectory 1 Wi Wi

Trajectory 2 Z Wi

Trajectory 3 Z Z
Trajectory 4 Wi Z



SyncTweedies 29

Next, we introduce an additional operator Fi that synchronizes instance vari-
ables. This operator unprojects a set of instance variables and averages them in
the canonical space. Subsequently, the aggregated variables are reprojected to
the instance space:

Fi({wj}j=1:N ) = fi(A({gj(wj)}j=1:N )). (13)

The red arrows in the diagrams of Figure A9 indicate the potential incorporation
of Fi. Thus, a total of 2N different cases can be derived from a trajectory marked
by N red arrows, depending on whether Fi is applied to each variable or not.

Lastly, we present an instance variable denoising process which proceeds
without any synchronization, along with the six representative joint diffusion
processes discussed in Section 3.2:

No Synchronization : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i ))) + σtϵ

Case 1 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(w

(t)
i ,Fi(ϵθ(w

(t)
i )))) + σtϵ

Case 2 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(w
(t)
i , ϵθ(w

(t)
i )))) + σtϵ

Case 3 : w(t−1)
i = Fi(ψ

(t)
σt

(w
(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i )))) + σtϵ

Case 4 : z(t−1) = ψ(t)
σt

(z(t), ϕ(t)(z(t),A({gi(ϵθ(fi(z(t))))}))) + σtϵ

Case 5 : z(t−1) = ψ(t)
σt

(z(t),A({gi(ϕ(t)(fi(z
(t)), ϵθ(fi(z

(t)))))})) + σtϵ

Case 6 : z(t−1) = A({gi(ψ(t)
σt

(fi(z
(t)), ϕ(t)(fi(z

(t)), ϵθ(fi(z
(t))))))}) + σtϵ.

Note that, as outlined in Section 3.2, Case 3 and Case 6 are identical except for
the initialization, which can be either {w(T )

i } or z(T ).
For the independent instance variable denoising process (No Synchroniza-

tion), we apply the final synchronization in the RGB space at the end of the
denoising process.

A5.2 Instance Variable Denoising Process

Here, we explore all possible instance variable denoising processes. In these pro-
cesses, the canonical space Z is employed to synchronize the outputs of ϵθ(·),
ϕ(t)(·, ·) and ψ(t)

σt (·, ·) in the instance spaces.
Following the trajectory 1 shown in part (a) of Figure A9, marked by five red

arrows, there are a total of 25 = 32 possible denoising processes. This includes the
independent instance variable denoising process (No Synchronization), where Fi
is not applied at any red arrow. Additionally, the three representative instance
variable denoising processes, Cases 1 to 3, are also included, along with Cases 7
to 34 which are presented below:

Case 7 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(w

(t)
i , ϵθ(Fi(w

(t)
i )))) + σtϵ

Case 8 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(w

(t)
i ,Fi(ϵθ(Fi(w

(t)
i ))))) + σtϵ

Case 9 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(Fi(w

(t)
i ), ϵθ(w

(t)
i ))) + σtϵ

Case 10 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(Fi(w

(t)
i ), ϵθ(Fi(w

(t)
i )))) + σtϵ

Case 11 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(Fi(w

(t)
i ),Fi(ϵθ(w

(t)
i )))) + σtϵ

Case 12 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(Fi(w

(t)
i ),Fi(ϵθ(Fi(w

(t)
i ))))) + σtϵ

Case 13 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(w
(t)
i , ϵθ(Fi(w

(t)
i ))))) + σtϵ
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Case 14 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(w
(t)
i ,Fi(ϵθ(w

(t)
i ))))) + σtϵ

Case 15 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(w
(t)
i ,Fi(ϵθ(Fi(w

(t)
i )))))) + σtϵ

Case 16 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(Fi(w
(t)
i ), ϵθ(w

(t)
i )))) + σtϵ

Case 17 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(Fi(w
(t)
i ), ϵθ(Fi(w

(t)
i ))))) + σtϵ

Case 18 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(Fi(w
(t)
i ),Fi(ϵθ(w

(t)
i ))))) + σtϵ

Case 19 : w(t−1)
i = ψ(t)

σt
(w

(t)
i ,Fi(ϕ

(t)(Fi(w
(t)
i ),Fi(ϵθ(Fi(w

(t)
i )))))) + σtϵ

Case 20 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), ϕ(t)(w

(t)
i , ϵθ(w

(t)
i ))) + σtϵ

Case 21 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), ϕ(t)(w

(t)
i , ϵθ(Fi(w

(t)
i )))) + σtϵ

Case 22 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), ϕ(t)(w

(t)
i ,Fi(ϵθ(w

(t)
i )))) + σtϵ

Case 23 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), ϕ(t)(w

(t)
i ,Fi(ϵθ(Fi(w

(t)
i ))))) + σtϵ

Case 24 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), ϕ(t)(Fi(w

(t)
i ), ϵθ(w

(t)
i ))) + σtϵ

Case 25 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), ϕ(t)(Fi(w

(t)
i ),Fi(ϵθ(w

(t)
i )))) + σtϵ

Case 26 : w(t−1)
i = Fi(ψ

(t)
σt

(w
(t)
i , ϕ(t)(w

(t)
i ,Fi(ϵθ(w

(t)
i ))))) + σtϵ

Case 27 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ),Fi(ϕ

(t)(w
(t)
i , ϵθ(w

(t)
i )))) + σtϵ

Case 28 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ),Fi(ϕ

(t)(w
(t)
i , ϵθ(Fi(w

(t)
i ))))) + σtϵ

Case 29 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ),Fi(ϕ

(t)(w
(t)
i ,Fi(ϵθ(w

(t)
i ))))) + σtϵ

Case 30 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ),Fi(ϕ

(t)(w
(t)
i ,Fi(ϵθ(Fi(w

(t)
i )))))) + σtϵ

Case 31 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ),Fi(ϕ

(t)(Fi(w
(t)
i ), ϵθ(w

(t)
i )))) + σtϵ

Case 32 : w(t−1)
i = Fi(ψ

(t)
σt

(w
(t)
i ,Fi(ϕ

(t)(w
(t)
i , ϵθ(w

(t)
i ))))) + σtϵ

Case 33 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ),Fi(ϕ

(t)(Fi(w
(t)
i ),Fi(ϵθ(w

(t)
i ))))) + σtϵ

Case 34 : w(t−1)
i = Fi(ψ

(t)
σt

(w
(t)
i ,Fi(ϕ

(t)(w
(t)
i ,Fi(ϵθ(w

(t)
i )))))) + σtϵ.

Similarly, four cases are derived from the trajectory 2 shown in part (c) of
Figure A9. These correspond to Cases 35 to 38 below:

Case 35 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , fi(ϕ

(t)(A({gj(w(t)
j )}),A({gj(ϵθ(w(t)

j ))})))) + σtϵ

Case 36 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , fi(ϕ

(t)(A({gj(w(t)
j )}),A({gj(ϵθ(Fi(w

(t)
j ))}))))) + σtϵ

Case 37 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), fi(ϕ

(t)(A({gj(w(t)
j )}),A({gj(ϵθ(w(t)

j ))})))) + σtϵ

Case 38 : w(t−1)
i = ψ(t)

σt
(Fi(w

(t)
i ), fi(ϕ

(t)(A({gj(w(t)
j )}),A({gj(ϵθ(Fi(w

(t)
j ))}))))) + σtϵ.

The trajectory 3 shown in part (e) of Figure A9 accounts for two cases,
corresponding to Case 39 and Case 40 below:

Case 39 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}), ϕ(t)(A({gj(w(t)

j )}),A({gj(ϵθ(w(t)
j ))})))) + σtϵ

Case 40 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}), ϕ(t)(A({gj(w(t)

j )}),A({gj(ϵθ(Fi(w
(t)
j )))})))).

Lastly, the trajectory 4 shown in part (g) of Figure A9 includes Cases 41 to
48 below:

Case 41 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(w

(t)
j , ϵθ(w

(t)
j )))}))) + σtϵ

Case 42 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(w

(t)
j , ϵθ(Fi(w

(t)
j ))))}))) + σtϵ

Case 43 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(w

(t)
j ,Fi(ϵθ(w

(t)
j ))))}))) + σtϵ

Case 44 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(w

(t)
j ,Fi(ϵθ(Fi(w

(t)
j )))))}))) + σtϵ

Case 45 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w

(t)
j ), ϵθ(w

(t)
j )))}))) + σtϵ

Case 46 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w

(t)
j ), ϵθ(Fi(w

(t)
j ))))}))) + σtϵ

Case 47 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w

(t)
j ),Fi(ϵθ(w

(t)
j ))))}))) + σtϵ

Case 48 : w(t−1)
i = fi(ψ

(t)
σt

(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w

(t)
j ),Fi(ϵθ(Fi(w

(t)
j )))))}))) + σtϵ.
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A5.3 Canonical Variable Denoising Process

Here, we present all possible canonical variable denoising processes. Due to the
absence of noise prediction in the canonical space, a process first redirects canon-
ical variable z(t) to the instance spaces where a subsequence of operations ϵθ(·),
ϕ(t)(·, ·) and ψ(t)

σt (·, ·) are computed.
We exclude the application of Fi to w

(t)
i ← fi(z

(t)), as the variable remains
unchanged after the operation. Therefore, applying Fi to w

(t)
i ← fi(z

(t)) for the
inputs of ϵθ(·), ϕ(t)(·, ·) and ψ(t)σt(·, ·) is not considered.

Case 4 which belongs to the trajectory 3, is visualized in part (f) of Figure A9.
Case 5 and Case 49 derive from the trajectory 4 which are shown in part (h) of
Figure A9.

Case 49 : z(t−1) = ψ(t)
σt

(z(t),A({gi(ϕ(t)(fi(z
(t)),Fi(ϵθ(fi(z

(t)))))})))

In the trajectory 1, 22 = 4 cases are possible, as shown in part (b) of Fig-
ure A9. This includes Case 6 along with Cases 50 to 52 below:

Case 50 : z(t−1) = A({gi(ψ(t)
σt

(fi(z
(t)), ϕ(t)(fi(z

(t)),Fi(ϵθ(fi(z
(t)))))))}) + σtϵ

Case 51 : z(t−1) = A({gi(ψ(t)
σt

(fi(z
(t)),Fi(ϕ

(t)(fi(z
(t)), ϵθ(fi(z

(t)))))))}) + σtϵ

Case 52 : z(t−1) = A({gi(ψ(t)
σt

(fi(z
(t)),Fi(ϕ

(t)(fi(z
(t)),Fi(ϵθ(fi(z

(t))))))))}) + σtϵ.

Lastly, trajectory 2, shown in part (d) of Figure A9, encompasses one possible
case, corresponding to Case 53:

Case 53 : z(t−1) = A({gi(ψ(t)
σt

(fi(z
(t)), fi(ϕ

(t)(z(t),A({gi(ϵθ(fi(z(t))))})))))}) + σtϵ.

A5.4 Combined Variable Denoising Process

In this section, we introduce combined variable denoising processes where both
instance and canonical variables are denoised. This process synchronizes instance
variables and a canonical variable by aggregating the unprojected instance vari-
ables and the canonical variable in the canonical space.

For clarity, we introduce additional operations below. δZ(·) takes a variable
in the canonical space z ∈ Z, projects it into the instance spaces, predicts
noises in those spaces, and aggregates them back in the canonical space after
the unprojection. Φ

(t)
Z (·) then computes Tweedie’s formula [39] based on the

noise term computed by δZ(·).

δZ(z) = A({gi(ϵθ(fi(z)))}) (14)

Φ
(t)
Z (z) = ϕ(t)(z, δ(z)). (15)

Similarly, given a set of variables in the instance spaces {wi}, the following
operators aggregate the unprojected outputs of ψ(t)

σt (·, ·), ϵθ(·) and ϕ(t)(·, ·) in
the canonical space:
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Ψ
(t)
Wi

({wi}) = A({gi(ψ(t)
σt

(w
(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i ))))}) (16)

δWi
({wi}) = A({gi(ϵθ(w(t)

i ))}) (17)

Φ
(t)
Wi

({wi}) = A({gi(ϕ(t)(w(t)
i , ϵθ(w

(t)
i )))}) (18)

(19)

We present joint variable denoising cases on the representative cases discussed
in Section A5:

Case 54 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , ϕ(t)(w

(t)
i , fi(A({δWi

({w(t)
i }), δZ(z(t))})))) + σtϵ

Case 55 : w(t−1)
i = ψ(t)

σt
(w

(t)
i , fi(A({Φ(t)

Wi
({w(t)

i }),Φ(t)
Z (z(t))}))) + σtϵ

Case 56 : w(t−1)
i = fi(A({Ψ(t)

Wi
({w(t)

i }), z(t−1)})) + σtϵ

Case 57 : z(t−1) = ψ(t)
σt

(z(t), ϕ(t)(z(t),A({δZ(z(t)), δWi
({w(t)

i })}))) + σtϵ

Case 58 : z(t−1) = ψ(t)
σt

(z(t),A({Φ(t)
Wi

({fi(z(t))}),Φ(t)
Wi

({w(t)
i })}) + σtϵ

Case 59 : zt−1 = A({Ψ(t)
Wi

({fi(z(t))}),A({gi(w(t−1)
i )})}) + σtϵ.

Cases 54 to 59 correspond to the combined variable denoising processes from
Cases 1 to 6, respectively. In each of the above cases, we highlight the terms
already present in the original representative case in orange and newly added
variable to be synchronized together in purple.

A5.5 Quantitative Results

In Table A9, we present the quantitative results of the 60 joint diffusion pro-
cesses listed above. We follow the same toy experiment setup described in both
Section 3.4 and Section A1.1. As outlined in Section A5.1, for the independent
instance variable denoising process (No Synchronization), we perform the final
synchronization only at the end of the denoising process. For n-to-1 projection,
we utilize M = 10 multiplane images to closely simulate the the variance de-
crease issue.

We report the quantitative results of all cases in Table A9. The results align
with the observations of Table 1. In the 1-to-1 projection scenario, most joint
diffusion processes exhibit similar performances. Except for Case 55 and Case
56, the combined variable denoising processes (Cases 54 to 59) show suboptimal
performances with FID [15] scores over 100. This indicates that denoising either
instance variables or a canonical variable is sufficient to produce satisfactory,
consistent results.

When it comes to the 1-to-n projection scenario, Case 2 and Case 5 out-
perform the others, with some exceptions such as Case 11 and Case 55. This
trend is also consistent with the results in Section 3.4, highlighting the effective-
ness of synchronizing the outputs of Tweedie’s formula [39] ϕ(t)(·, ·) even when
compared to complex joint diffusion processes.

Lastly, in the n-to-1 projection scenario, Case 2 (SyncTweedies) is the only
one that outperforms the others across all metrics, except for GIQA [12]. Al-
though Case 6, Case 50, and Case 53 achieve higher GIQA scores than SyncTweedies,
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the resulting images are entirely white, as evidenced by significantly high FID [15]
and KID [5] scores. Note that GIQA [12] only evaluates the fidelity of individual
generated images without considering the diversity of the entire image set. As
a result, it may not adequately represent the overall quality of the generated
images.

In conclusion, as shown in Table A9, Case 2 (SyncTweedies) distinctly ex-
hibits superior performance across various projection scenarios, outperforming
even more complex joint diffusion processes.

Table A9: A quantitative comparison of all cases in ambiguous image gener-
ation. KID [5] and GIQA [12] are scaled by 103 and 104, respectively. For each column,
we highlight the row whose value is within 95% of the best.

CLIP-A [36] ↑ CLIP-C [36] ↑ FID [15] ↓ KID [5] ↓ GIQA [12] ↑

1-to-1 Projection

No Sync. 28.49 62.0 102.14 51.72 20.09
Case 1 30.26 64.45 85.55 31.95 21.26
Case 2

SyncTweedies
30.35 64.52 85.36 31.82 21.27

Case 3 30.34 64.46 85.31 31.57 21.31
Case 4 30.28 64.47 85.37 32.44 21.21
Case 5 30.36 64.43 85.56 32.1 21.24
Case 6 30.3 64.49 84.75 31.29 21.31
Case 7 30.33 64.51 84.6 31.93 21.27
Case 8 30.27 64.49 85.03 32.08 21.25
Case 9 29.46 62.17 97.48 44.21 20.42
Case 10 30.36 64.68 84.79 31.44 21.29
Case 11 30.31 64.48 85.81 32.26 21.27
Case 12 30.31 64.53 84.48 31.56 21.28
Case 13 30.33 64.46 85.83 32.35 21.22
Case 14 30.33 64.57 85.69 32.36 21.28
Case 15 30.35 64.63 85.6 32.17 21.24
Case 16 30.34 64.57 85.9 32.55 21.2
Case 17 30.32 64.5 85.66 32.3 21.21
Case 18 30.31 64.63 85.48 32.35 21.22
Case 19 30.33 64.53 85.18 31.38 21.27
Case 20 29.91 63.48 92.18 38.44 20.77
Case 21 30.3 64.41 85.54 32.18 21.24
Case 22 30.33 64.61 85.99 32.41 21.22
Case 23 30.31 64.59 85.17 31.77 21.28
Case 24 30.06 63.91 91.82 37.62 20.83
Case 25 30.3 64.46 85.41 32.22 21.26
Case 26 30.36 64.59 84.98 31.93 21.3
Case 27 30.31 64.49 84.89 31.8 21.25
Case 28 30.33 64.42 85.34 32.61 21.25
Case 29 30.33 64.55 85.93 32.29 21.24
Case 30 30.33 64.51 85.03 31.72 21.26
Case 31 30.32 64.42 85.95 32.91 21.16
Case 32 30.33 64.5 85.78 32.35 21.24
Case 33 30.34 64.63 85.77 32.4 21.25
Case 34 30.37 64.66 84.99 31.84 21.28
Case 35 30.36 64.59 85.39 31.64 21.29
Case 36 30.34 64.55 84.59 31.8 21.31
Case 37 30.33 64.63 85.21 31.84 21.3
Case 38 30.39 64.56 84.75 31.82 21.3
Case 39 30.31 64.55 85.56 32.67 21.2
Case 40 30.29 64.55 85.44 32.17 21.24
Case 41 30.31 64.48 85.53 32.02 21.24
Case 42 30.35 64.47 85.62 32.68 21.18
Case 43 30.31 64.55 85.4 32.09 21.25
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CLIP-A [36] ↑ CLIP-C [36] ↑ FID [15] ↓ KID [5] ↓ GIQA [12] ↑

Case 44 30.3 64.51 86.13 32.55 21.22
Case 45 30.32 64.42 85.44 32.25 21.2
Case 46 30.34 64.51 85.59 32.67 21.2
Case 47 30.32 64.52 85.06 31.76 21.29
Case 48 30.35 64.57 84.95 31.96 21.25
Case 49 30.3 64.48 85.46 32.43 21.22
Case 50 30.31 64.46 86.49 32.97 21.21
Case 51 30.3 64.47 85.83 32.41 21.23
Case 52 30.35 64.62 86.05 32.44 21.21
Case 53 30.28 64.45 85.38 32.21 21.25
Case 54 21.27 50.03 422.05 491.69 19.58
Case 55 30.09 64.26 87.04 34.26 21.1
Case 56 30.33 64.4 87.26 33.06 21.25
Case 57 21.28 49.99 420.29 495.9 19.35
Case 58 27.02 60.08 113.68 57.55 20.16
Case 59 26.88 60.05 116.9 60.24 20.14

1-to-n Projection

No Sync. 27.64 56.97 132.6 107.41 18.84
Case 1 26.12 54.97 231.23 212.39 18.69
Case 2

SyncTweedies
30.23 60.87 110.73 76.25 20.04

Case 3 29.96 60.49 118.53 86.38 19.67
Case 4 25.86 54.29 254.74 250.76 18.46
Case 5 30.29 61.0 108.77 74.51 20.13
Case 6 30.0 60.55 117.64 84.84 19.71
Case 7 28.41 58.41 195.37 186.39 17.89
Case 8 25.79 54.21 271.32 278.01 18.35
Case 9 28.77 57.56 129.27 99.92 19.17
Case 10 30.11 60.91 115.29 84.28 19.88
Case 11 30.2 60.84 110.38 76.53 20.07
Case 12 29.92 60.8 121.93 86.54 19.91
Case 13 29.93 60.84 121.64 86.13 19.91
Case 14 29.3 59.91 163.26 127.25 18.43
Case 15 29.53 60.29 158.83 140.3 18.51
Case 16 30.05 60.45 117.48 86.86 19.75
Case 17 30.1 60.74 118.56 88.96 19.75
Case 18 30.18 60.77 113.1 79.59 19.94
Case 19 30.17 60.79 117.68 85.37 19.85
Case 20 29.45 59.41 119.8 87.59 19.59
Case 21 30.06 60.76 115.39 82.83 19.79
Case 22 30.02 60.58 116.08 83.42 19.76
Case 23 30.06 60.69 117.55 84.91 19.77
Case 24 29.45 59.43 121.43 89.89 19.52
Case 25 29.94 60.45 118.35 86.34 19.67
Case 26 30.02 60.55 119.02 86.96 19.69
Case 27 29.92 60.45 118.86 86.83 19.66
Case 28 30.01 60.52 119.1 86.91 19.68
Case 29 29.94 60.54 118.76 85.98 19.69
Case 30 29.97 60.52 120.49 89.38 19.62
Case 31 29.95 60.45 119.19 86.53 19.62
Case 32 30.02 60.62 119.03 86.73 19.68
Case 33 29.95 60.52 119.92 87.55 19.61
Case 34 29.96 60.54 119.57 87.29 19.66
Case 35 30.2 60.84 110.38 76.08 20.07
Case 36 29.92 60.8 121.93 86.99 19.91
Case 37 29.94 60.45 118.35 86.27 19.67
Case 38 30.02 60.55 119.02 86.99 19.69
Case 39 29.94 60.45 118.35 86.05 19.67
Case 40 30.02 60.55 119.02 87.07 19.69
Case 41 29.92 60.45 118.86 86.51 19.66
Case 42 30.01 60.52 119.1 86.46 19.68
Case 43 29.94 60.54 118.76 86.42 19.69
Case 44 29.97 60.52 120.49 89.04 19.62
Case 45 29.95 60.45 119.19 86.38 19.62
Case 46 30.02 60.62 119.03 87.21 19.68
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CLIP-A [36] ↑ CLIP-C [36] ↑ FID [15] ↓ KID [5] ↓ GIQA [12] ↑

Case 47 29.95 60.52 119.92 87.91 19.61
Case 48 29.96 60.54 119.57 87.2 19.66
Case 49 29.32 59.98 162.41 126.53 18.42
Case 50 30.0 60.62 118.17 85.47 19.7
Case 51 29.96 60.53 119.6 87.85 19.62
Case 52 30.02 60.62 119.79 87.78 19.61
Case 53 30.0 60.62 118.17 85.66 19.7
Case 54 21.25 49.99 442.91 538.91 19.13
Case 55 25.99 55.43 223.48 200.81 18.81
Case 56 25.9 55.22 229.84 210.01 18.79
Case 57 21.25 50.02 423.48 501.66 19.67
Case 58 28.21 58.01 151.01 122.97 18.63
Case 59 28.05 57.96 152.2 123.95 18.58

n-to-1 Projection

No Sync. 28.26 61.75 111.11 57.24 20.21
Case 1 21.28 49.94 405.82 496.98 19.52
Case 2

SyncTweedies
29.56 63.1 96.3 40.91 20.99

Case 3 21.58 50.58 243.23 151.11 22.42
Case 4 21.33 50.05 301.2 233.11 22.7
Case 5 21.09 50.04 289.82 213.45 23.09
Case 6 22.28 50.11 329.11 299.11 25.1
Case 7 21.76 50.01 422.31 518.33 18.41
Case 8 21.72 50.0 426.69 530.85 18.57
Case 9 22.81 51.54 192.3 112.63 21.61
Case 10 25.05 56.05 158.99 92.29 19.91
Case 11 25.67 54.72 288.88 278.59 19.18
Case 12 25.67 56.48 160.32 92.54 19.69
Case 13 25.11 53.61 260.91 223.48 19.8
Case 14 24.29 52.09 344.55 379.52 19.17
Case 15 25.38 53.72 259.18 221.03 19.56
Case 16 27.93 58.75 198.49 144.28 19.54
Case 17 25.02 53.69 194.6 130.03 20.22
Case 18 25.32 53.76 315.92 329.26 19.07
Case 19 24.65 53.49 212.36 157.81 20.27
Case 20 21.53 50.71 236.09 157.04 22.36
Case 21 22.47 52.48 189.73 104.92 21.31
Case 22 23.74 54.67 154.53 77.4 20.63
Case 23 22.75 53.44 174.95 87.28 20.88
Case 24 21.63 50.83 206.25 110.93 21.48
Case 25 24.72 57.52 130.55 60.76 19.48
Case 26 21.53 50.81 211.99 122.67 22.29
Case 27 21.53 50.4 246.63 161.28 22.67
Case 28 21.44 50.9 253.72 157.43 22.17
Case 29 21.28 50.75 249.3 151.45 21.98
Case 30 21.58 50.84 249.85 152.37 22.13
Case 31 21.69 50.63 233.72 144.35 21.37
Case 32 21.89 50.68 243.65 160.12 22.33
Case 33 22.22 51.04 208.49 117.23 20.89
Case 34 22.01 50.48 257.02 171.18 22.38
Case 35 25.72 54.78 289.98 279.62 19.2
Case 36 25.73 56.58 160.42 93.2 19.68
Case 37 24.79 57.46 131.86 61.08 19.47
Case 38 21.52 50.86 211.71 121.06 22.33
Case 39 24.77 57.45 130.03 59.89 19.54
Case 40 21.58 50.88 212.99 122.21 22.34
Case 41 21.52 50.5 247.4 161.85 22.64
Case 42 21.46 50.86 253.6 157.02 22.14
Case 43 21.31 50.67 249.7 151.85 21.96
Case 44 21.54 50.85 251.18 154.49 22.17
Case 45 21.65 50.54 237.56 147.55 21.41
Case 46 21.94 50.69 244.4 161.12 22.34
Case 47 22.27 51.05 206.73 114.38 20.87
Case 48 22.05 50.47 258.46 174.1 22.38
Case 49 21.13 50.05 280.71 195.28 22.79
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CLIP-A [36] ↑ CLIP-C [36] ↑ FID [15] ↓ KID [5] ↓ GIQA [12] ↑

Case 50 22.73 50.03 350.36 322.78 25.15
Case 51 22.29 50.04 354.31 332.85 23.19
Case 52 22.31 50.06 349.66 322.96 23.51
Case 53 22.74 50.06 349.41 321.65 25.17
Case 54 20.77 50.06 419.46 495.55 19.48
Case 55 22.01 50.15 270.14 192.31 22.45
Case 56 21.8 50.1 291.59 217.05 22.57
Case 57 21.56 50.03 405.75 477.82 18.37
Case 58 26.32 58.49 124.28 66.34 19.95
Case 59 26.52 59.09 108.41 46.07 20.39
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