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Figure 1: Diverse visual content generated by SyncTweedies: A novel synchronized
diffusion process applicable to various downstream tasks without finetuning.

Abstract
We introduce a general diffusion synchronization framework for generating di-
verse visual content, including ambiguous images, panorama images, 3D mesh
textures, and 3D Gaussian splats textures, using a pretrained image diffusion
model. We first present an analysis of various scenarios for synchronizing mul-
tiple diffusion processes through a canonical space. Based on the analysis, we
introduce a novel synchronized diffusion method, SyncTweedies, which aver-
ages the outputs of Tweedie’s formula while conducting denoising in multiple
instance spaces. Compared to previous work that achieves synchronization through
finetuning, SyncTweedies is a zero-shot method that does not require any finetun-
ing, preserving the rich prior of diffusion models trained on Internet-scale image
datasets without overfitting to specific domains. We verify that SyncTweedies
offers the broadest applicability to diverse applications and superior performance
compared to the previous state-of-the-art for each application. Our project page is
at https://synctweedies.github.io.
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1 Introduction

Image diffusion models [44, 35] have shown unprecedented ability to generate plausible images that
are indistinguishable from real ones. The generative power of these models stems not only from their
capacity to learn from a vast diversity of potential data but also from being trained on Internet-scale
image datasets [46, 47].

Our goal is to expand the capabilities of pretrained image diffusion models to produce a wide range
of 2D and 3D visual content, including panoramic images and textures for 3D objects, without the
need to train diffusion models for each specific visual content. Despite the existence of general image
datasets on the scale of billions [46], collecting other forms of visual data at this scale is not feasible.
Nonetheless, most visual content can be converted into a regular image of a specific size through
certain mappings, such as projecting for panoramic images and rendering for textures of 3D objects.
Thus, we employ such a bridging function between each type of visual content and images, along
with standard image diffusion models like StableDiffusion [44] and Midjourney [35].

We introduce a general generative framework that generates data points in the desired visual content
space—referred to as canonical space—by combining the denoising process of diffusion models in the
conventional image space—referred to as instance spaces. Given the bridging functions connecting
the canonical space and instance spaces, we first explore performing individual denoising processes
in each instance space while synchronizing them in the canonical space via the mapping. Another
approach is to denoise directly in the canonical space, although it is not immediately feasible due to
the absence of diffusion models trained on the canonical space. We investigate redirecting the noise
prediction to the instance spaces but aggregating the outputs later in the canonical space.

Depending on the timing of aggregating the outputs of computation in the instance spaces, we identify
five main possible options for the diffusion synchronization processes. Previous works [4, 16, 32]
have investigated each of the possible cases only for specific applications, and none of them have
analyzed and compared them across a range of applications. For the first time, we present a general
framework for diffusion synchronization processes, within which the previous works [4, 16, 32] are
contextualized as specific cases. We then present extensive analyses of different choices of diffusion
synchronization processes. Based on the analyses, we demonstrate that the approach which has not
been attempted in any previous work, conducting denoising processes in instance spaces (not the
canonical space) and synchronizing the outputs of Tweedie’s formula [43] in the canonical space,
provides the broadest applicability across a range of applications and the best performance. We
name this approach SyncTweedies and showcase its superior performance in multiple visual content
creation tasks compared with previous state-of-the-art methods.

Previous works [52, 31, 48, 58] finetune pretrained diffusion models to generate new types of outputs
such as 360◦ panoramas and 3D mesh texture images. However, this approach requires a large
quantity of target content for high-quality outputs which is prohibitively expensive to acquire. When
it comes to generating visual content that can be parameterized into an image, a notable zero-shot
approach not utilizing diffusion synchronization is Score Distillation Sampling (SDS) [38], which
has shown particular effectiveness in 3D generation and texturing [29, 55, 57, 34]. However, this
alternative application of diffusion models has been observed to produce suboptimal results and
also requires a high CFG [20] weight for convergence, leading to over-saturation. For 3D texture
generation, specifically, an approach that iteratively updates each view image has also been explored
in multiple previous works [9, 41, 7, 21, 15]. However, the accumulation of errors over iterations has
been identified as a challenge. We demonstrate that our diffusion synchronization-based approach
outperforms these methods in terms of generation quality across various applications.

Overall, our contributions can be summarized as follows:

• We propose, for the first time, a general generative framework for diffusion synchronization
processes.

• Through extensive analyses of various options for diffusion synchronization processes, including
previous works [32, 16, 60, 4], we identify that a previously unexplored approach, SyncTweedies,
offers the broadest applicability and superior performance.

• In our experiments, we verify the superior performance and versatility of SyncTweedies across
diverse applications, including texturing on 3D meshes and Gaussian Splats [24], and depth-to-
360-panorama generation. Compared to the previous state-of-the-art methods based on finetuning,
optimization, and iterative updates, SyncTweedies demonstrates significantly better results.
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2 Problem Definition

We consider a generative process that samples data within a space we term the canonical space Z ,
where a pretrained diffusion model is not provided. Instead, we leverage diffusion models trained
in other spaces called the instance spaces {Wi}i=1:N , where a subset of the canonical space can
be instantiated into each of them via a mapping: fi : Z → Wi; we refer to this mapping as the
projection. Let gi denote the unprojection, which is the inverse of fi, mapping the instance space to
a subset of the canonical space. We assume that the entire canonical space Z can be expressed as
a composition of multiple instance spacesWi, meaning that for any data point z ∈ Z , there exist
{wi |wi ∈ Wi}i=1:N such that

z = A ({gi(wi)}i=1:N ) , (1)
where A is an aggregation function that averages the data points from the multiple instance spaces in
the canonical space. Our objective is to introduce a general framework for the generative process
in the canonical space by integrating multiple denoising processes from different instance spaces
through synchronization.

3 Diffusion Synchronization
We first outline the denoising procedure of DDIM [49] and then present possible options for diffusion
synchronization processes based on it.

3.1 Denoising Process of DDIM [49]
Song et al. [49] have proposed DDIM, a generalized denoising process that controls the level of
randomness during denoising. In DDIM [49], the posterior of the forward process is represented as
follows:

qσt

(
x(t−1)|x(t),x(0)

)
= N

(
ψ(t)
σt

(x(t),x(0)), σ2
t I
)
, (2)

where ψ(t)
σt (x

(t),x(0)) =
√
αt−1x

(0) +
√

1−αt−1−σ2
t

1−αt
· (x(t) −√αtx(0)) and σt is a hyperparameter

determining the level of randomness. In this paper, we consider a deterministic process where σt = 0

for all t, thus ψ(t)
σt=0 will be denoted as ψ(t) for simplicity. During denoising process, to sample x(t−1)

from its unknown original clean data point x(0), we estimate x(0) using Tweedie’s formula [43]:

x(0) ≃ ϕ(t)(x(t), ϵθ(x
(t))) =

x(t) −
√
1− αtϵθ(x(t))
√
αt

, (3)

where ϵθ is a noise prediction network, and for simplicity, the time input and condition term in ϵθ are
dropped. In short, each deterministic denoising step of DDIM [49] is expressed as follows:

x(t−1) = ψ(t)(x(t), ϕ(t)(x(t), ϵθ(x
(t)))). (4)

3.2 Diffusion Synchronization Processes
We now explore various scenarios of sampling z ∈ Z by leveraging the composition of multiple
denoising processes in the instance spaces {Wi}i=1:N . Consider the denoising step of the diffusion
model at each time step t in each instance spaceWi:

w
(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i ))). (5)

A naïve approach to generating data in the canonical space through the denoising processes in instance
spaces would be to perform the processes independently in each instance space and then aggregate the
final denoised outputs in the canonical space at the end using the averaging functionA. However, this
approach results in poor outcomes that lack consistency across outputs in different instance spaces.
Hence, we propose to synchronize the denoising processes at each time step t through the unprojection
operation gi from each instance space to the canonical space and the aggregation operation A,
after which the results will be back-projected via the projection operation fi to each instance
space again. Note that, as described in Equation 4, the estimated mean ψ(t)(·, ·) of the posterior
distribution involves multiple layers of computations: noise prediction ϵθ(·), Tweedie’s formula [43]
ϕ(t)(·, ·) approximating the final output x(0) each time step, and the final linear combination ψ(t)(·, ·).
Synchronization through the sequence of unprojection gi, aggregation in the canonical space A, and
projection fi can thus be performed after each layer of these computations, resulting in the following
three cases:
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(a) Instance variable denoising process (b) Canonical variable denoising process
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Figure 2: Diagrams of diffusion synchronization processes. The left diagram depicts denoising
instance variables {wi}, while the right diagram illustrates directly denoising a canonical variable z.

Case 1 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i , fi(A({gj(ϵθ(w(t)

j ))}Nj=1))))

Case 2 : w(t−1)
i = ψ(t)(w

(t)
i , fi(A({gj(ϕ(t)(w(t)

j , ϵθ(w
(t)
j )))}Nj=1))

Case 3 : w(t−1)
i = fi(A({gj(ψ(t)(w

(t)
j , ϕ(t)(w

(t)
j , ϵθ(w

(t)
j ))))}Nj=1)).

In each case, we highlight the computation layer to be synchronized in red.

Another notable approach is to conduct the denoising process directly on the canonical space:

z(t−1) = ψ(t)(z(t), ϕ(t)(z(t), ϵθ(z
(t))))), (6)

although it is not directly feasible because the noise prediction network in the canonical space ϵθ(z(t))
is not available. Nevertheless, it can be achieved by redirecting the noise prediction to the instance
spaces as follows:

(a) project the intermediate noisy data point z(t) from the canonical space to each instance
space, resulting in fi(z(t)),

(b) apply a subsequence of the operations: ϵθ, ϕ(t), and ψ(t),
(c) unproject the outputs back to the canonical space via gi and then average them using the

aggregation function A, and
(d) perform the remaining operations in the canonical space.

Such an approach of performing the denoising process in the canonical space leads to the following
two additional cases depending on the subsequence of operations at step (b):

Case 4 : z(t−1) = ψ(t)(z(t), ϕ(t)(z(t),A({gi(ϵθ(fi(z(t))))}Ni=1))))

Case 5 : z(t−1) = ψ(t)(z(t),A({gi(ϕ(t)(fi(z(t)), ϵθ(fi(z(t)))))}Ni=1)).

Note the analogy between Case 1 and Case 4, and Case 2 and Case 5 in terms of the information
averaged in the canonical space with the aggregation operator A: either the outputs of ϵθ(·) or
ϕ(t)(·, ·).
While it is also feasible to conduct the aggregation A multiple times with the output of different
layers within a single denoising step, and to denoise data both in instance spaces and the canonical
space, we empirically find that such more convoluted cases perform worse. In the appendix, we
detail our exploration of all possible cases and present experimental analyses.

3.3 Connection to Previous Diffusion Synchronization Methods
Below, we first review previous works each corresponding to a specific case of the aforementioned
possible diffusion synchronization processes while focusing on a specific application. Then, we
discuss finetuning-based approaches and their limitations. In Section 4, we also review literature
targeting the same applications but without synchronized diffusion.

3.3.1 Zero-Shot-Based Methods
Ambiguous Image Generation. Ambiguous images are images that exhibit different appearances
under certain transformations, such as a 90◦ rotation or flipping. They can be generated through

4



a diffusion synchronization process, considering both the canonical space Z and instance spaces
{Wi}i=1:N as the same space of the image, with the projection operation fi representing the transfor-
mation producing each appearance. Visual Anagrams [16] uses Case 4 which aggregates the noise
predictions ϵθ(·) to generate ambiguous images.

Arbitrary-Sized Image Generation. In arbitrary-sized image generation, the canonical space Z is
the space of the arbitrary-sized image, while the instance spaces {Wi}i=1:N are overlapping patches
across the arbitrary-sized image, matching the resolution of the images that the pretrained image
diffusion model can generate. The projection operation fi corresponds to the cropping operation
applied to each patch. MultiDiffusion [4] and SyncDiffusion [27] introduced arbitrary-sized image
generation methods using Case 3, averaging the mean of the posterior distribution ψ(t)(·, ·).

Mesh Texturing. In 3D mesh texturing, the texture image space serves as the canonical space Z ,
and the rendered images from each view serve as the instance spaces {Wi}i=1:N . The rendering from
the 3D textured mesh to the 2D image acts as the projection operation fi. SyncMVD [32] proposed
leveraging diffusion synchronization across the views using Case 5, which averages the outputs of
Tweedie’s formula [43] ϕ(t)(·, ·).

3.3.2 Finetuning-Based Methods
In addition to the aforementioned works, there have been attempts to achieve synchronization
through finetuning. In multi-view image generation, SyncDreamer [31] and MVDream [48] finetune
pretrained image diffusion models to achieve consistency across different views. For 360◦ panorama
image generation, MVDiffusion [52] and DiffCollage [60] generate panoramas through finetuning.
Additionally, Paint3D [58] trains a position encoder to directly generate 3D mesh texture images in
the UV space. However, these finetuning-based methods use target sample datasets [14, 8, 13, 11]
that are smaller by orders of magnitude compared to Internet-scale image datasets [46], e.g., 10K
panorama images [8] vs. 5B images [46]. As a result, they are prone to ovefitting and losing the
rich prior and generalizability of pretrained image diffusion models [44, 45]. Additionally, for 3D
content, the poor quality of textures in most 3D models results in unsatisfactory texturing outcomes,
even with relatively large-scale datasets [14, 13]. In our experiments, we demonstrate that our zero-
shot synchronization method, fully leveraging the pretrained model without bias toward a specific
dataset, provides the best realism and widest diversity, assessed by FID and KID, compared to the
finetuning-based methods.

Table 1: A quantitative comparison of ambiguous image generation. KID [5] is scaled by 103.
For each row, we highlight the column whose value is within 95% of the best.

Projection Metric Case 1 SyncTweedies
Case 2 Case 3 Visual Anagrams [16]

Case 4 Case 5

1-to-1
Projection

CLIP-A [16] ↑ 30.35 30.4 30.32 30.35 30.34
CLIP-C [16] ↑ 64.52 64.48 64.49 64.59 64.48

FID [19] ↓ 85.88 86.74 85.69 86.35 86.54
KID [5]↓ 32.37 32.59 32.57 32.41 32.86

1-to-n
Projection

CLIP-A [16] ↑ 25.97 30.16 29.94 25.64 30.23
CLIP-C [16] ↑ 54.77 60.86 60.64 54.15 61.01

FID [19] ↓ 232.65 110.51 117.84 257.53 108.22
KID [5] ↓ 216.71 77.16 85.52 257.43 74.48

n-to-1
Projection

CLIP-A [16] ↑ 21.28 29.56 21.58 21.33 21.09
CLIP-C [16] ↑ 49.94 63.1 50.58 50.05 50.04

FID [19] ↓ 405.82 96.3 243.23 301.2 289.82
KID [5] ↓ 496.98 40.91 151.11 233.11 213.45

3.4 Comparison Across the Diffusion Synchronization Processes
Here, we compare the five cases of diffusion synchronization processes in Section 3.2 and analyze
their characteristics through various toy experiments.

3.4.1 Toy Experiment Setup: Ambiguous Image Generation
For the toy experiment setup, we employ the task of generating ambiguous images introduced by
Geng et al. [16] (see Section 3.3.1 for descriptions of ambiguous images). We use the 95 prompt
pairs and the 10 transformations used by Geng et al. [16], all of which are 1-to-1 projections,
resulting in a total of 950 generated ambiguous images.

The quantitative and qualitative results of the five cases of diffusion synchronization processes are
presented in Table 1 and Figure 3. For more detailed experiment setups, refer to the appendix.
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Case 1 SyncTweedies
Case 2 Case 3 Visual Anagrams [16]

Case 4 Case 5
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1-to-1 Projection, “a photo of {a ship, a dog}”

1-to-n Projection, “an oil painting of {a watering can, a dragon}”

n-to-1 Projection, “a painting of {a car, an airplane}”

Figure 3: A qualitative comparison of different diffusion synchronization processes. While
all cases perform well in the 1-to-1 projections, Case 1, Case 3 and Visual Anagrams [16] exhibit
degraded performance when a projection is 1-to-n. Notably, SyncTweedies can be applied to the
widest range of projections, including n-to-1 projections.

As illustrated, the results of 1-to1 projection are similar across all diffusion synchronization processes,
indicating that any of those can be chosen for this specific task.

3.4.2 1-to-n Projection
We further investigate the five cases of diffusion synchronization processes with different transforma-
tions for ambiguous images. It is important to note that all the transformations previously mentioned
are perfectly invertible, meaning: fi(gi(wi)) = wi. However, in certain applications, the projection
fi is often not a function but an 1-to-n mapping, thus not allowing its inverse. For example, consider
generating a texture image of a 3D object while treating the texture image space as the canonical
space and the rendered image spaces as instance spaces. When mapping each pixel of a specific
view image to a pixel in the texture image in the rendering process—with nearest neighbor sampling,
one pixel in the texture space can be projected to multiple pixels. Hence, the unprojection operation
gi cannot be a perfect inverse of the projection fi but can only be an approximation, making the
reprojection error ∥wi − fi(gi(wi))∥ small. We observe that such a case of having 1-to-n projection
fi can significantly impact the diffusion synchronization process.

As a toy experiment setup illustrating such a case with ambiguous image generation, we use rotations
with nearest-neighbor sampling as transformations. We randomly select an angle and rotate an inner
circle of the image while leaving the rest of the region unchanged. Due to discretization, rotating an
image followed by an inverse rotation may not perfectly restore the original image.

The middle row of Table 1 and Figure 3 present the quantitative and qualitative results of this
experiment. Note that the performance of Case 1 and Visual Anagrams [16], which aggregate the
predicted noises ϵθ(·) from either instance variables w(t)

i or a projected canonical variable fi(z(t))
respectively, significantly declines. Also, the performance of Case 3, which aggregates the posterior
means ψ(t)(·, ·), shows a minor decline. Case 2 and Case 5, however, remain almost unchanged. This
highlights that the denoising process is highly sensitive to the predicted noise and to the intermediate
noisy data points, while it is much more robust to the outputs of Tweedie’s formula [43] ϕ(t)(·, ·), the
prediction of the final clean data point at an intermediate stage.

3.4.3 n-to-1 Projection
Then, do the results above conclude that both Case 2 and Case 5 are suitable for all applications?
Lastly, we consider the case when the projection fi also involves an n-to-1 mapping. Such a scenario
can arise when coloring not a solid mesh but a neural 3D representation rendered with the volume
rendering equation [23, 24, 36]. Due to the nature of volume rendering, which involves sampling
multiple points along a ray and taking a weighted sum of their information, the projection operation

6



fi includes an n-to-1 mapping. In this case, Case 5 results in poor outcomes due to a variance
decrease issue. Let {xi}i=1:N be random variables, each sampled from xi ∼ N (µi, σ

2
t I), and

x =
∑N
i=1 wixi be the weighted sum, where 0 ≤ wi ≤ 1 and

∑N
i=1 wi = 1. Then, x also follows

the Gaussian distribution:

x ∼ N

(
N∑
i=1

wiµi,

N∑
i=1

w2
i σ

2
t I

)
. (7)

From the triangle inequality [37], the sum of squares is always less than or equal to the square of the
sum:

∑N
i=1 w

2
i ≤ (

∑N
i=1 wi)

2 = 1, implying that the variance of x is mostly less than the variance
of xi. Consequently, when fi includes an n-to-1 mapping, the variance of w(t)

i , computed as a
weighted sum over multiple points in the canonical space, is less than the variance of z(t). Thus, the
final output of Case 5 becomes blurry and coarse since each intermediate noisy latent in instance
spaces w(t)

i experiences a decrease in variance compared to that of z(t).

We validate our analysis with another toy experiment, where we use the same set of transformations
used by Geng et al. [16] but with a multiplane image (MPI) [53] as the canonical space. The image
of each instance space is rendered by first averaging colors in the multiplane of the canonical space
and then applying the transformation. Ten planes are used for the multiplane image representation in
our experiments. The results are presented in the third row of Table 1 and Figure 3. Notably, Case 5
also produces blurry images like the other cases, whereas Case 2 still generates realistic images.

Table 2 below summarizes suitable cases for each projection type. Note that Case 2, which has
not been attempted in any of the previous works, is the only case that is applicable to any type of
projection function. Since Case 2 involves averaging the outputs of Tweedie’s formula in the instance
spaces, we name this case SyncTweedies. Experimental results with additional applications are
demonstrated in Section 5, and analysis of all possible cases is presented in the appendix.

Table 2: Analysis of diffusion synchronization processes on different projection scenarios.
SyncTweedies offers the broadest range of applications.

Projection Application Case 1 SyncTweedies
Case 2 Case 3 Case 4 Case 5

1-to-1 Ambiguous images,
Arbitrary-sized images

✔ ✔ ✔ ✔ ✔

1-to-n 360◦ panoramas,
3D mesh texturing

✗ ✔ ✗ ✗ ✔

n-to-1 3D Gaussian
Splat [24] texturing

✗ ✔ ✗ ✗ ✗

Previous Work - - MultiDiffusion [4] Visual Anagrams [16] SyncMVD [32]

4 Related Work
In addition to Section 3.3.1 introducing previous works on diffusion synchronization, in this section,
we review other previous works that utilize pretrained image diffusion models in different ways to
generate or edit visual content.

Optimization-Based Methods. Poole et al. [38] first introduced Score Distillation Sampling
(SDS), which facilitates data sampling in a canonical space by leveraging the loss function of the
diffusion model training and performing gradient descent. This idea, originally introduced for 3D
generation [54, 29, 51], has been widely applied to various applications, including vector image
generation [22], ambiguous image generation [6], mesh texturing [34, 10, 57], mesh deformation [56],
and 4D generation [30, 3]. Subsequent works [18, 25, 26] also proposed modified loss functions not
to generate data but to edit existing data while preserving their identities. This approach, exploiting
diffusion models not for denoising but for gradient-descent-based updating, generally produces less
realistic outcomes and is more time-consuming compared to denoising-based generation.

Iterative View Updating Methods. Particularly for 3D object/scene texturing and editing, there
are approaches to iteratively update each view image and subsequently refine the 3D object/scene.
TEXTure [41], Text2Tex [9], and TexFusion [7] are previous works that sequentially update a partial
texture image from each view and unproject it onto the 3D object mesh. For texturing 3D scene
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Table 3: A quantitative comparison in a 3D mesh texturing application. KID is scaled by 103.
The best in each row is highlighted by bold.

Metric Diffusion Synchronization Finetuning
-Based

Optim.
-Based

Iter. View
Updating

Case 1
Sync-

Tweedies
Case 2

Case 3 Case 4
Sync-

MVD [32]
Case 5

Paint3D
[58]

Paint-it
[57]

TEXTure
[41]

Text2Tex
[9]

FID [19] ↓ 135.61 21.76 36.12 131.67 22.76 31.66 28.23 34.98 26.10
KID [5] ↓ 68.63 1.46 6.60 65.70 1.74 5.69 2.30 6.83 2.51

CLIP-S [39] ↑ 25.26 28.89 27.88 25.31 28.82 28.04 28.55 28.63 27.94

Table 4: A quantitative comparison in a Depth-to-360-Panorama application. KID is scaled by
103. The best in each row is highlighted by bold.

Metric Case 1 SyncTweedies
Case 2 Case 3 Case 4 Case 5 MVDiffusion [52]

FID [19] ↓ 364.61 42.11 55.95 348.18 43.39 80.51
KID [5] ↓ 375.42 21.19 34.67 362.77 22.87 56.91

CLIP-S [39] ↑ 19.75 28.01 27.19 19.93 27.99 24.74

meshes, Text2Room [21] and SceneScape [15] take a similar approach and update scene textures
sequentially. Instruct-NeRF2NeRF [17] proposed to edit a 3D scene by iteratively replacing each
view image used in the optimization. However, sequentially updating the canonical sample leads to
error accumulations, resulting in blurriness or inconsistency across different views.

5 Applications

We quantitatively and qualitatively compare SyncTweedies with the other diffusion synchronization
processes, as well as the state-of-the-art methods of each application: 3D mesh texturing (Section 5.1),
depth-to-360-panorama generation (Section 5.2) ,and 3D Gaussian splats [24] texturing (Section 5.3).

Due to the page limit, please refer to the appendix for qualitative results.

Additional comprehensive experiments and detailed experiment setups, including (1) results of
arbitrary-sized image generation, (2) a comparison of computation times, (3) user preference eval-
uations, (4) 3D mesh texture editing, and (5) implementation details of each application, are also
provided in the appendix.

Refer to Section 3.3.1 for the detailed definition of the canonical space Z , the instance spaces
{Wi}i=1:N , the projection operation fi, and the unprojection operation gi in each application.

Evaluation Setup. Across all the following applications, we compute FID [19] and KID [5] to
assess the fidelity of the generated images. Additionally, we measure CLIP similarity [39] (CLIP-S)
to evaluate conformity to the input text prompt. We use a depth-conditioned ControlNet [59] as the
pretrained image diffusion model.

5.1 3D Mesh Texturing
In 3D mesh texturing, projection operation fi is a rendering function which outputs perspective
view images from a 3D mesh with a texture image. This operation represents a 1-to-n projection
due to discretization. We evaluate five diffusion synchronization cases along with Paint3D [58],
a finetuning-based method, Paint-it [57], an optimization-based method, and TEXTure [41] and
Text2Tex [9], which are iterative-update-based methods. We use 429 pairs of meshes and prompts
used in TEXTure [41] and Text2Tex [9].

Results. We present quantitative results in Table 3. The results in Table 3 align with the observations
shown in the 1-to-n projection case discussed in Section 3.4.2. SyncTweedies and SyncMVD [32]
outperform other baselines across all metrics, but ours demonstrates superior performance compared
to SyncMVD. Notably, SyncTweedies outperforms Paint3D [58], a finetuning-based method, in-
dicating that finetuning with a relatively small set of synthetic 3D objects [14] is not sufficient for
realistic texture generation. See the appendix for qualitative results.
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Table 5: A quantitative comparison of texturing 3D Gaussian splats [24]. KID is scaled by 103.
The best in each row is highlighted by bold.

Metric Diffusion Synchronization Optim.-Based Iter. View.
Updating

Case 1
Sync-

Tweedies
Case 2

Case 3 Case 4 Case 5 SDS [38] MVDream-
SDS [48] IN2N [17]

FID [19] ↓ 211.65 106.47 120.52 114.53 116.73 110.29 141.77 109.65
KID [5] ↓ 85.11 14.62 19.15 17.11 18.35 19.71 38.69 15.73

CLIP-S [39] ↑ 24.69 29.55 29.53 29.30 29.12 29.33 28.69 29.25

5.2 Depth-to-360-Panorama
We generate 360◦ panorama images from input 360◦ depth maps obtained from the 360Mon-
oDepth [40] dataset. Here, the projection operation fi is a perspective transformation from the 360◦

panorama canvas to a perspective view image, which is an 1-to-n projection due to the discretization.
We compare SyncTweedies with previous diffusion-synchronization-based methods [4, 16, 32] and
MVDiffusion [52], which was finetuned using 3D scenes in the ScanNet [11] dataset. We generate a
total of 500 360◦ panorama images at 0◦ elevation, and a field of view of 72◦.

Results. We report quantitative results of the five diffusion synchronization processes discussed
in Section 3.2 in Table 4. Table 4 demonstrates a trend consistent with the 1-to-n projection
toy experiment results shown in Section 3.4.2. Specifically, SyncTweedies and Case 5, which
synchronize the outputs of Tweedie’s formula ϕ(t)(·, ·), exhibit the best performance. Notably,
SyncTweedies demonstrates slightly superior performance across all metrics. MVDiffusion [52],
which was trained using indoor scenes, fails to adapt to new, unseen domains and shows inferior
results. See the appendix for qualitative results.

5.3 3D Gaussian Splats Texturing
Lastly, to verify the difference between SyncTweedies and Case 5 both of which demonstrate
applicability up to 1-to-n projections as outlined in Section 3.4.2, we explore texturing 3D Gaussian
Splats [24], exemplifying an n-to-1 projection case. In 3D Gaussian splats texturing, the projection
operation fi is an n-to-1 case, characterized by a volumetric rendering function [23]. This function
computes a weighted sum of n 3D Gaussians splats in the canonical space to render a pixel in the
instance space.

While recent 3D generative models [51, 50] generate plausible 3D objects represented as 3D Gaussian
splats, they often lack fine details in the appearance. We validate the effectiveness of SyncTweedies
on pretrained 3D Gaussian splats [24] from the Synthetic NeRF dataset [36]. We use 50 views
for texture generation and evaluate the results from 150 unseen views. For baselines, we evaluate
diffusion-synchronization-based methods, the optimization-based methods, SDS [38], MVDream-
SDS [48], and the iterative-update-based method, Instruct-NeRF2NeRF (IN2N) [17].

Results. Table 5 presents a quantitative comparison of 3D Gaussian splats [24] texturing.
SyncTweedies, unaffected by the variance decrease issue, outperforms Case 5, as observed in
the toy experiments in Section 3.4.3. When compared to other baselines based on optimization
(SDS [38] and MVDream-SDS [48]) and iterative view updating (IN2N [17]), ours outperforms
across all metrics, especially by a large margin in FID [19]. See the appendix for qualitative results.

6 Conclusion
We have explored various scenarios for synchronizing multiple denoising processes and evaluated
their performance across a range of applications, including ambiguous image generation, panorama
generation, and texturing on 3D mesh and 3D Gaussian splats. Our investigation demonstrates that the
approach named SyncTweedies, which averages the outputs of Tweedie’s formula while conducting
denoising in multiple instance spaces, offers the best performance and the widest applicability.

Limitations and Societal Impacts. Despite the superior performance of SyncTweedies across
diverse applications, updating both the geometry and appearance of 3D objects using synchronized
diffusion processes remains an open problem. Also, since the pretrained image diffusion model
may have been trained with uncurated images, SyncTweedies might inadvertently produce harmful
content.

9



References
[1] Luma AI. Genie.

[2] Franz Aurenhammer. Voronoi Diagrams—a survey of a fundamental geometric data structure. CSUR,
1991.

[3] Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gordon Wetzstein, Leonidas Guibas, Peter Wonka,
Sergey Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, and David B Lindell. 4D-fy: Text-to-4d generation
using hybrid score distillation sampling. arXiv preprint arXiv:2311.17984, 2023.

[4] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
controlled image generation. In ICML, 2023.
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A1 Qualitative Results

A1.1 3D Mesh Texturing

As shown in Figure A4, SyncTweedies and SyncMVD [32] generate the most realistic output
images, aligning with the results of n-to-1 projection scenarios discussed in Section 3.4.2. Notably,
Paint3D [58], a finetuing-based method, produces inferior textures, losing fine-details, as seen in
the appearance of the car in row 1 and the patterns of the ladybug in row 5. This demonstrates the
challenge of acquiring a sufficient amount of high-quality texture images for satisfactory results. The
optimization-based method [57] tends to produce images with high-contrast, unnatural colors, as
evidenced in rows 4 and 6. Lastly, the iterative view updating methods [41, 9] show inconsistencies
across views noticeable in the front bumpers of minivan in row 1 and the fragmented fingers on
baseball gloves in row 2.

Prompt
Diffusion Synchronization Finetuning

-Based
Optim.
-Based

Iter. View
Updating

Case 1
Sync-

Tweedies
Case 2

Case 3 Case 4
Sync-

MVD [32]
Case 5

Paint3D
[58]

Paint-it
[57]

TEXTure
[41]

Text2Tex
[9]

“Minivan”

“Baseball
glove”

“Clock”

“Jeep”

“ladybug”

“iPod"

“Excavator"

“Orangutan”

“Tele-
vision set”

“Light
bulb”

“UGG
boot”

“latern”

Figure A4: 3D mesh texturing qualitative result. SyncTweedies and SyncMVD [32] exhibit
comparable results, outperforming other baselines. Finetuning-based method [58] produces images
without fine details as it was trained on a dataset with coarse texture images. The optimization-based
method [57] tends to produce unrealistic and high saturation textures, while iterative-view-updating-
based methods [9, 41] show view inconsistencies.
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A1.2 Depth-to-360-Panorama Generation
As shown in Figure A5, SyncTweedies and Case 5 demonstrate the best results, aligning well with
the input depth maps, with SyncTweedies showing a slightly better alignment as indicated by the red
arrow in Figure A5. On the other hand, MVDiffusion [52], which is finetuned with the depth maps of
indoor 3D scenes from the ScanNet [11] dataset, produces suboptimal results and fails to generate
realistic 360◦ panoramas for out-of-domain scenes. This demonstrates that MVDiffusion [52] is
overfitting to the scenes encountered during finetuning, resulting in a loss of generalizability. Cases 1
and 4, which aggregate the predicted noise ϵθ(·), produce noisy outputs. Case 3 yields suboptimal
360◦ panoramas, characterized by monochromatic appearances and a lack of detail.

Outdoor Scenes
“a house at night” “a church in a large building”

Input
Depth

Case 1

SyncTweedies
Case 2

Case 3

Case 4

Case 5

MVDiffusion [52]

Indoor Scenes
“a room with some empty walls” “a living room inside a palace”

Input
Depth

Case 1

SyncTweedies
Case 2

Case 3

Case 4

Case 5

MVDiffusion [52]

Figure A5: Qualitative results of 360◦ panorama generation. SyncTweedies and Case 5 generate
consistent and high-fidelity 360◦ panorama images as observed in the 1-to-n projection experiment in
Section 3.4.2. MVDiffusion [52] fails to generalize to out-of-domain scenes and generates suboptimal
360◦ panorama images.
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A1.3 3D Gaussian Splats Texturing

Figure A6 shows that SyncTweedies generates high-fidelity results with intricate details, such as the
carvings of a ship in row 1, while Case 5 lacks fine details. Optimization-based methods, SDS [38]
and MVDream-SDS [48], produce artifacts characterized by high saturation, such as the corns in
row 2 and the excavator in row 4. Notably, a finetuning-based method, MVDream-SDS [48], shows
inferior quality to SDS. As discussed in Section 3.3.2, the poor quality of textures in the finetuning
dataset [14] results in quality degradation. Iterative-view-updating-based method, IN2N [17], fails to
preserve fine details, such as the head of the microphone in row 3.

Prompt Input
3DGS [24]

Diffusion Synchronization Optim.-
Based

Iter. View.
Updating

Case 1
Sync-

Tweedies
Case 2

Case 3 Case 4 Case 5 SDS [38] MVDream-
SDS [48] IN2N [17]

“[S∗] an
intricate wooden

carving of
a ship”

“[S∗] corn”

“[S∗] purple
microphone”

“[S∗] a wooden
carving of a
excavator”

“[S∗] a drum
kit made
of ruby”

“[S∗] carrots”

“[S∗] a
military

ship at sea”

“[S∗] a
leather
chair”

“[S∗] a wooden
carving of a
microphone”

Figure A6: Qualitative results of texturing 3D Gaussian splats. [S∗] is a prefix prompt. We used
“Make it to” for IN2N [17] and “A photo of” for the other methods. Case 5 tends to lose details
due to the variance decrease issue, whereas SyncTweedies generates realistic images by avoiding
this issue. The optimization-based methods [38, 48] produce high contrast, unnatural colors, and the
iterative view updating method [17] yields suboptimal outputs due to error accumulation.

A2 Experiment Details

In this section, we provide details of the experiments discussed. For all diffusion synchronization
processes, we use a fully deterministic DDIM [49] sampling with 30 steps, unless specified otherwise.

In the case of instance variable denoising processes introduced in Section 3.2 (Cases 1 to Case 3),
we initialize instance variables by projecting an initial canonical latent z(T ) sampled from a unit
Gaussian distribution N (0, I): w(T )

i ← fi(z
(T )). For n-to-1 projection cases, the instance variables

are directly initialized from a unit Gaussian distribution which can avoid the variance decrease issue
discussed in Section 3.4.1.

As described in Section 3.4.1 and Section 5, we use DeepFloyd [12] as the pretrained diffusion model
for the ambiguous image generation which denoises images in the RGB space. For the depth-to-360-
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panorama generation, 3D mesh texturing, and 3D Gaussian splats texturing, we employ a pretrained
depth-conditioned ControlNet [59] which is based on a latent diffusion model, specifically Stable
Diffusion [44]. For applications utilizing ControlNet, synchronization during the intermediate steps
of diffusion synchronization processes occurs within the same latent space, except for 3D Gaussian
splats texturing. In the case of 3D Gaussian splats texturing, synchronization takes place in the
RGB space, and detailed explanations are provided in Section A2.4. At the end of the diffusion
synchronization processes, we perform the final synchronization in the RGB space using the decoded
instance variables across all applications.

Evaluation Metrics. For all applications, we evaluate diversity and fidelity of the generated images
using FID [19] and KID [5]. These metrics compute scores based on the distance between the
distribution of the generated image set and that of the reference image set, with the reference
set forming the target distribution. Refer to each application section for detailed description of
constructing the generated image set and the reference image set.

To evaluate the text alignment of the generated images, we report CLIP similarity score [39] (CLIP-S)
which measures the similarity between the generated images w

(0)
i and their corresponding text

prompts pi in CLIP [39] embedding space. Additionally, in the ambiguous image generation, we
report CLIP alignment score (CLIP-A) and CLIP concealment score (CLIP-C) following previous
work, Visual Anagrams [16]. To compute the metrics, we begin by calculating a CLIP similarity
matrix S ∈ RN×N from N pairs of transformations and text prompts:

Sij = Eimg(fi(z
(0)))TEtext(pj), (8)

where Eimg(·) and Etext(·) are the image encoder and the text encoder of the pretrained CLIP
model [39], respectively. CLIP-A quantifies the worst alignment among the corresponding image-text
pairs, specifically computed as min diag(S). However, this metric does not account for misalignment
failure cases, where pi is visualized in w

(0)
j for i ̸= j. CLIP-C considers alignment of an (a) image

(prompt) to all prompts (images) by normalizing the similarity matrix S with a softmax operation:

1

N
tr(softmax(S/τ)), (9)

where tr(·) denotes the trace operator, and τ = 0.07 is the temperature parameter of CLIP [39].

A2.1 Details on Ambiguous Image Generation — Section 3.4.1

We present the details of the ambiguous image generation experiments in Section 3.4.1. Quantitative
and qualitative results are presented in Table 1 and Figure 3.

Evaluation Setup. To evaluate the fidelity of the generated images using FID [19] and KID [5], we
create a reference set consisting of 5,000 generated images from Stable Diffusion 1.5 [44] with the
same text prompts used in the generation of ambiguous images.

Implementation Details. We use DeepFloyd [12] which is a two-stage cascaded pixel-space
diffusion model. In the first stage, we generate 64× 64 images that are upscaled to 256× 256 images
in the subsequent stage.

Definition of Operations. In the context of ambiguous image generation, both the instance variables
{wi}i=1:N and canonical variables z share the same image space. However, instance variables exhibit
different appearances from the canonical variable upon applying certain transformations.

In the 1-to-1 projection case, we use the 10 transformations used in Visual Anagrams [16], all of
which are 1-to-1 mappings. The projection operation fi is defined as the transformation itself, and
the unprojection operation gi is defined as the inverse of the transformation matrix.

In the scenario of 1-to-n projection, we employ inner circle rotation as the projection operation
fi. This involves rotating the pixels within an inner circle of an image while keeping the outer
pixels unchanged. The unprojection operation gi is the inverse of fi. We use 14 inner circle rotation
transformations, with rotation angles evenly spaced in the range [45◦, 175◦]. For evaluation, we
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utilize the same 95 prompts as in the 1-to-1 case for each transformation, generating 14×95 = 1, 350
ambiguous images. After applying a rotation transformation, the grid of the rotated image does not
align with the original image grid. Thus, we use the nearest-neighbor sampling to retrieve pixel
colors from the original image to the rotated image. This sampling process leads to a scenario where
a single pixel in the original image z can be mapped to multiple pixels in the rotated image wi, which
is a 1-to-n mapping.

For n-to-1 projection, we use the same transformations and text prompts as in the 1-to-1 projection
experiment, thus resulting in a total of 10 × 95 = 950 ambiguous images. The only difference
from the 1-to-1 projection experiment is that the canonical space variable z is now represented as
multiplane images (MPI) [53], where a collection of planes {pj}j=1:M represents a single canonical
variable. Specifically, we compute z by averaging the multiplane images: z = 1

M

∑M
j=1 pj . In the

context of n-to-1 projection, we substitute the sequence of the unprojection gi and the aggregation A
operation with an optimization process. The multiplane images pj are optimized using the following
objective function:

min
{pj}

N∑
i

∣∣∣∣∣∣fi
 1

M

M∑
j=1

pj

−wi

∣∣∣∣∣∣ , (10)

where wet set the number of planes M = 10.

A2.2 Details on 3D Mesh Texturing — Section 5.1

We provide details of the 3D mesh texturing experiments presented in Section 5.1. Quantitative and
qualitative results are shown in Table 3 and Figure A4.

Evaluation Setup. We use 429 mesh and prompt pairs collected from previous works, TEX-
Ture [41] and Text2Tex [9]. For texture generation, we use eight views sampled around the object
with 45◦ intervals at 0◦ elevation. Two additional views are sampled at 0◦ and 180◦ azimuths with
30◦ elevation. For evaluation, we render a 3D mesh to ten perspective views with randomly sampled
azimuths at 0◦ elevation, resulting 10×429 = 4,290 images. Following SyncMVD [32], the reference
set images are generated by ControlNet [59] using the same depth maps and text prompts used in the
texture generation.

Implementation Details. The resolution of the latent texture image is 1, 536× 1, 536, and that of
the latent perspective view images is 96× 96. In the RGB space, the resolution of the texture image
is 1, 024× 1, 024 and that of the perspective view images is 768× 768.

We adopt two approaches introduced in SyncMVD [32]: Voronoi-diagram-based filling [2] and
modified self-attention layers. First, the high resolution of the latent texture image results in a texture
image with sparse pixel distribution. To address this issue, we propagate the unprojected pixels to
the visible regions of the texture image using the Voronoi-diagram-based filling. Second, spatially
distant views tend to generate inconsistent outputs. Therefore, we adopt the modified self-attention
mechanism that attends to other views when computing the attention output.

Definition of Operations. In the 3D mesh texturing, the canonical variable z is the texture image
of a 3D mesh, and the instance variables {wi}i=1:N are rendered images from the 3D mesh. The
projection operation fi is a rendering function where nearest-neighbor sampling is utilized to retrieve
the color from the texture image to perspective view images.

As done in the n-to-1 projection case in Section A2.1, we replace the unprojection gi and aggregation
A operation to an optimization process. This process optimizes the texture image z using the multi-
view images {wi}i=1:N . In the 3D mesh texturing, one pixel in the texture image z can be mapped to
multiple pixels in a rendered image wi. Hence, this application corresponds to the 1-to-n projection
case as in Section 3.4.2.

A2.3 Details on Depth-to-360-Panorama Generation — Section 5.2

We provide details of the Depth-to-360-Panorama generation experiments presented in Section 5.2.
Refer to Table 4 and Figure A5 for quantitative and qualitative results.
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Evaluation Setup. We evaluate SyncTweedies and the baseline methods on 500 pairs of 360◦
panorama images and depth maps randomly sampled from 360MonoDepth [40] dataset. For each
360◦ panorama image, we generate a text prompt using the output of BLIP [28] by providing a
perspective view image of the panorama as input.

In the 360◦ panorama generation, we use eight perspective views by evenly sampling azimuths with
45◦ intervals at 0◦ elevation. Each perspective view has a field of view of 72◦ for synchronized-
diffusion-based methods and 90◦ for MVDiffusion [52]. For evaluation, we project the generated
360◦ panorama image to ten perspective views with randomly sampled azimuths at 0◦ elevation and
a field of view of 60◦. Similarly, the reference set images are obtained by projecting each ground
truth 360◦ panorama image into ten perspective views with azimuths randomly sampled and at 0◦
elevation. In total, we use 500× 10 = 5, 000 perspective view images for evaluation.

Implementation Details. We set the resolution of a latent panorama image to 2,048 × 4,096 and
that of the latent perspective view images to 64 × 64. In the RGB space, a panorama image has a
resolution of 1,024 × 2,048, and perspective view images have a resolution of 512 × 512.

As done in the 3D mesh texturing, we apply the Voronoi-diagram-based filling [2] after each
unprojection operation and employ the modified self-attention mechanism.

Definition of Operations. In the 360◦ panorama generation, the canonical variable z represents a
360◦ panorama image, while the instance variables {wi}i=1:N correspond to perspective views of the
panorama. The mappings between the panorama image and the perspective views are computed as
follows: First, we unproject the pixels of the perspective view image to the 3D space. Then, we apply
two rotation matrices based on the azimuth and elevation angles. The pixels are then reprojected onto
the surface of a unit sphere, represented as longitudes and latitudes. These spherical coordinates are
finally converted to 2D coordinates on the panorama image.

Given the mappings, the projection operation fi samples colors from the panorama image using the
nearest-neighbor method. Since a single pixel of a panorama image z can be mapped to multiple
pixels of a perspective view image wi, the 360◦ panorama generation is a 1-to-n projection case, as
discussed in Section 3.4.2.

A2.4 Details on 3D Gaussian Splats Texturing — Section 5.3

We provide details of the 3D Gaussian splats texturing experiment presented in Section 5.3. Quantita-
tive and qualitative results are provided in Table 5 and Figure A6.

Evaluation Setup. For evaluation, we use pretrained 3D Gaussian splats trained with multi-view
images from the Synthetic NeRF dataset [36], consisting of 8 objects. We generate 40 textured
3D Gaussian splats by utilizing five different prompts per 3D object. We use 50 views for texture
generation and 150 unseen views for evaluation.

Implementation Details. As described in Section A2, we employ ControlNet [59] which denoises
latent images. To render the latent images, we replace the spherical harmonics coefficients of a 3D
Gaussian splats to a 4-channel latent vector.

Additionally, we empirically observe that 3D Gaussian splats optimized in the RGB space yield better
results than those optimized in the latent space. Hence, SyncTweedies optimizes 3D Gaussian splats
in the RGB space by decoding the outputs of the Tweedie’s formula. However, this approach cannot
be extended to other cases that i) do not synchronize the outputs of ϕ(·, ·) and ii) compute ψ(·, ·) in
the canonical space. For this reason, we optimize 3D Gaussian splats in the latent space for Case 5.

Definition of Operations. The canonical variables {zj}j=1:M are 3D Gaussian splats and the
instance space variables {wi}i=1:N are the rendered images from the 3D Gaussian splats. The
projection operation fi is a volume rendering function [23, 24] where the colors (latent vectors)
of multiple 3D Gaussian splats are composited to render a pixel. This corresponds to the n-to-1
projection as discussed in Section 3.4.3. In 3D Gaussian splats texturing, the colors of 3D Gaussian
splats z = {sj}j=1:M are optimized from multi-view images {wi}i=1:N as in the n-to-1 experiment
in Section 3.4.3.
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Table A6: A quantitative comparison of arbitrary-sized image generation. KID is scaled by 103.
For each row, we highlight the column whose value is within 95% of the best.

Metric Case 1 SyncTweedies
Case 2

MultiDiffusion [4]
Case 3

Case 4 Case 5

FID [19] ↓ 32.83 32.82 32.83 32.82 32.83
KID [5] ↓ 7.79 7.79 7.79 7.79 7.80

CLIP-S [39] ↑ 31.69 31.69 31.69 31.69 31.69

A3 Arbitray-Sized Image Generation

In addition to the 1-to-1 projection case presented in Section 3.4.1, we present arbitrary-sized image
generation. In contrast to the 360◦ panorama generation which corresponds to the 1-to-n projection
case, arbitrary-sized image generation involves 1-to-1 projection.

Evaluation Setup. We follow the evaluation setup used in SyncDiffusion [27]. Using Stable
Diffusion 2.0 [44] as the pretrained diffusion model, we generate 500 arbitrary-sized images of
512 × 3, 072 resolution per prompt. With six text prompts from SyncDiffusion [27], we generate
a total of 500× 6 = 3, 000 arbitrary-sized images. For quantitative evaluation, we report the three
metrics used in the main paper: FID [19], KID [5], and CLIP-S [39]. For the sample set, we randomly
crop a partial view of each generated arbitrary-sized image to 512× 512 resolution. Similarly, 3, 000
reference images with 512× 512 resolution are generated from the pretrained diffusion model using
the same text prompts.

Implementation Details. The resolution of latent arbitrary-sized image is 64 × 384, and the
resolution of instance spaces is 64× 64. We use a deterministic DDIM [49] sampling with 50 steps.

Definition of Operations. While both the 360◦ panorama generation described in Section 5.2 and
arbitrary-sized image generation involve the merging of multiple window images, arbitrary-sized
image generation does not account for perspective projection. Instead, it crops a partial view of the
panoramic image without considering the perspective distortion.

Note that the grid of the panoramic image z and the window images {wi}i=1:N are perfectly aligned.
Hence, this corresponds to the 1-to-1 projection case discussed in Section 3.4.1 of the main paper.

Result. We report quantitative results in Table A6 and qualitative results in Figure A7. The
quantitative results align with the observations shown in the 1-to-1 experiment in Section 3.4.1, where
all diffusion synchronization cases show comparable performances.

This is further supported by the results in Figure A7, where all cases exhibit similar arbitrary-sized
images, suggesting that any of the options can be used when the projection is 1-to-1.
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“A photo of a city skyline at night”

Case 1

SyncTweedies
Case 2

MultiDiffusion [4]
Case 3

Case 4

Case 5

“A photo of a forest with a misty fog”

Case 1

SyncTweedies
Case 2

MultiDiffusion [4]
Case 3

Case 4

Case 5

Figure A7: Qualitative results of arbitrary-sized image generation. All cases of diffusion
synchronization processes show comparable results in the 1-to-1 projection.
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Input 3D mesh [1] Edited 3D mesh (SyncTweedies)

“A nascar” “A car with graffiti”

“A lantern” “A Chinese style lantern”

“A turtle” “A golden statue of a turtle”

Figure A8: Qualitative results of 3D mesh texture editing. We edit the textures of the 3D meshes
generated from Genies [1] using SyncTweedies.

A4 3D Mesh Texture Editing

In this section, we extend the 3D mesh texture generation in Section 5.1, and present texture editing
application.

Despite the recent successes of 3D generation models [1, 31], the textures of the generated 3D meshes
often lack fine details. We utilize SyncTweedies to edit the textures of the generated 3D meshes,
and enhance the texture quality. Specifically, we use the 3D meshes generated from a text-to-3D
model, Genie [1].

We follow SDEdit [33] to edit the textures of the 3D mesh. We begin by adding noise at intermediate
time t′ to the texture image of the 3D mesh, and take a reverse process starting from the same
intermediate time t′.

Implementation Details. We set the CFG weight [20] to 30 and t′ to 0.8. For other settings, we
follow the 3D mesh texture generation experiment presented in Section 5.1.

Results. We present qualitative results of 3D mesh texture editing in Figure A8. The 3D meshes
edited with SyncTweedies exhibit fine details, including graffiti on the car in row 1, paintings on the
lantern in row 2, and the intricate shells of the turtle in row 3.
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Table A7: A runtime comparison in 3D mesh texturing and 3D Gaussian splats texturing
applications. The best in each row is highlighted by bold.

Metric Diffusion
Synchronization

Finetuning.
-Based

Optim.
-Based

Iter. View
Updating

Runtime
(minutes) ↓

3D Mesh Texturing
SyncTweedies

Case 2
Paint3D [58] Paint-it

[57]
TEXTure

[41]
Text2Tex

[9]

1.83 2.65 21.95 1.54 13.10
3D Gaussian Splats Texturing

SyncTweedies
Case 2

- SDS
[38]

IN2N
[17]

10.56 - 85.50 37.93

A5 Runtime Comparison

As discussed in Section 4, one of the advantages of diffusion synchronization processes is the fast
computational speed. We compare the runtime performance of SyncTweedies with optimization-
based and iterative-update-based methods in the 3D mesh texturing and the 3D Gaussian splat
texturing. The quantitative results are presented in Table A7.

In the 3D mesh texturing, SyncTweedies shows faster computation times than other baselines except
TEXTure [41] which shows comparable running time. However, TEXTure [41] generates suboptimal
texture outputs as observed in Table 3 and Figure A4. The finetuning-based method Paint3D [58] has
a comparable running time to SyncTweedies, but it shows inferior quality, as seen in Table 3 and
Figure A4. Another iterative-update-based method, Text2Tex [9], improves quality of texture image
by integrating an additional refinement module, it introduces additional overhead in terms of running
times. In contrast, SyncTweedies achieves running times that are 7 times faster than Text2Tex and
even outperforms across all metrics as shown in Table 3. Lastly, SyncTweedies shows 11 times
faster running time when compared to Paint-it [57], an optimization-based method.

In the 3D Gaussian splats texturing, SyncTweedies achieves the fastest running time.
SyncTweedies is 3 times faster than the iterative-update-based method IN2N [17], and 8 times
faster than the optimization-based method, SDS [38]. This shows that SyncTweedies not only
generates high-fidelity textures, but also excels other baselines in computational speed.
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A6 User Study

We conduct user studies to evaluate the textures of 3D Gaussian splats [24] through Amazon’s
Mechanical Turk. Following the methodology of Ritchie [42], participants were presented with input
text prompts and randomly sampled output images generated by our method and the baseline methods.
Participants are asked to choose the most plausible image that aligns with the given text prompt. In
Table A8, our results are the most preferred in the human evaluations compared to the other baselines.

Details of User Study We conduct separate user studies comparing our method against represen-
tative baselines for diffusion synchronization methods (Case 5), optimization methods (SDS [38],
MVDream-SDS [48]), and iterative view updating methods (IN2N [17]). For each user study, we use
20 images in a shuffled order including five vigilance tasks. We collected survey responses only from
participants who passed the vigilance tasks. Specifically, 94 out of 100 participants passed in the study
with Case 5, 90 out of 100 passed with SDS [38], 95 out of 100 passed with MVDream-SDS [48],
and 92 out of 100 passed with IN2N [17]. Screenshots of our user studies, including an example of
vigilance tasks, are displayed in Figure A9.

Table A8: User study results in 3D Gaussian splats texturing application. SyncTweedies is the
most preferred method among the baselines from human evaluators.

Baselines Case 5 SDS [38] MVDream-SDS [48] IN2N [17]

Prefer Baseline (%) 33.56 41.33 12.21 40.05
Prefer SyncTweedies (%) 66.44 58.67 87.79 59.95

Left image Right image

Trial 1 out of 25
Below are two images generated from the same text prompt. Based on the prompt 
provided, which of the two images show better quality and alignment with the text 

prompt? 
Prompt: “A photo of white cruise ship at sea.”

Trial 7 out of 25
Below are two images generated from the same text prompt. Based on the prompt 
provided, which of the two images show better quality and alignment with the text 

prompt? 
Prompt: “Please choose an image of a dog.”

Left image Right image

(a) Main problem (b) Vigilance task

Figure A9: 3D Gaussian splats texturing user study screenshots. The participants are presented
with generated images and an input prompt, and are asked to select an image that shows better quality
and alignment with the prompt.
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(c) Instance variable denoising trajectory 2 (d) Canonical variable denoising trajectory 2

(a) Instance variable denoising trajectory 1 (b) Canonical variable denoising trajectory 1

(e) Instance variable denoising trajectory 3 (f) Canonical variable denoising trajectory 3

(g) Instance variable denoising trajectory 4 (h) Canonical variable denoising trajectory 4

Figure A10: Diagrams of diffusion synchronization processes. All feasible trajectories of the
instance variable denoising process (left) and the canonical variable denoising process (right). Each
row shares the same trajectory with different variables denoised.
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A7 Analysis of Diffusion Synchronization Processes

As outlined in Section 3.4.3, we present a comprehensive analysis of all possible diffusion synchro-
nization processes, including the representative five diffusion synchronization processes introduced
in Section 3.2. Following the main paper, we categorize diffusion synchronization processes into two
types: the instance variable denoising process, where instance variables {w(t)

i } are denoised, and
the canonical variable denoising process, which denoises a canonical variable z(t) directly. Unlike
the representative cases, other all feasible cases either take inconsistent inputs when computing
ϵθ(·), ϕ(t)(·, ·) and ψ(t)(·, ·) or conduct the aggregation A multiple times. Additionally, for a more
exhaustive analysis, we introduce another type of diffusion synchronization processes, named the
combined variable denoising process, which denoises {w(t)

i } and z(t) together.

We present a total of 46 feasible cases for the instance variable denoising process, 8 for the canonical
variable denoising process, and an additional 6 representative cases for the combined variable
denoising process. We provide instance variable denoising cases in Section A7.2, and canonical
variable denoising cases in Section A7.3. Additionally, the six representative cases for the combined
variable denoising process are detailed in Section A7.4.

We conduct a quantitative comparison of all listed cases following the experiment setup outlined in
Section 3.4.1, and the results are presented in Section A7.5.

A7.1 Overview

We provide the representative trajectories in Figure A10, where (a)-(b), (c)-(d), (e)-(f), and (g)-(h)
follow the same trajectory but differ in the denoising variable, either instance or canonical, respectively.
In each denoising case, there are 22 = 4 possible trajectories determined by whether ϕ(t)(·, ·) and
ψ(t)(·, ·) are computed in the canonical space or instance space. This is because among the three
computation layers—ϵθ(·), ϕ(t)(·, ·) and ψ(t)(·, ·)—only the last two operations can be computed in
both the canonical space and the instance space unlike noise prediction which is only available in the
instance space. Table A9 summarizes the computation spaces of ϕ(t)(·, ·) and ψ(t)(·, ·), along with
their corresponding trajectories.

Table A9: Computation space of each denoising trajectory. Except for the noise prediction ϵθ(·),
ϕ(t)(·, ·) and ψ(t)(·, ·) can be computed in either instance spaceWi or canonical space Z .

Trajectory ϕ(t)(·, ·)
Computation space

ψ(t)(·, ·)
Computation space

Trajectory 1 Wi Wi

Trajectory 2 Z Wi

Trajectory 3 Z Z
Trajectory 4 Wi Z

Next, we introduce an additional operator Fi that synchronizes instance variables. This operator
unprojects a set of instance variables and averages them in the canonical space. Subsequently, the
aggregated variables are reprojected to the instance space:

Fi({wj}j=1:N ) = fi(A({gj(wj)}j=1:N )). (11)

The red arrows in the diagrams of Figure A10 indicate the potential incorporation of Fi. Thus, a
total of 2N different cases can be derived from a trajectory marked by N red arrows, depending on
whether Fi is applied to each variable or not.

Lastly, we review the five representative diffusion synchronization processes discussed in Section 3.2,
along with two additional denoising processes: an instance variable denoising process that proceeds
without synchronization and a canonical variable denoising process that averages the outputs of
ψ(t)(·, ·) (Case 6):

No Synchronization : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i )))

Case 1 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i ,Fi(ϵθ(w(t)

i ))))

Case 2 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(w(t)

i , ϵθ(w
(t)
i ))))
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Case 3 : w(t−1)
i = Fi(ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i ))))

Case 4 : z(t−1) = ψ(t)(z(t), ϕ(t)(z(t),A({gi(ϵθ(fi(z(t))))})))
Case 5 : z(t−1) = ψ(t)(z(t),A({gi(ϕ(t)(fi(z(t)), ϵθ(fi(z(t)))))}))
Case 6 : z(t−1) = A({gi(ψ(t)(fi(z

(t)), ϕ(t)(fi(z
(t)), ϵθ(fi(z

(t))))))}).

Note that Case 3 and 6 are identical except for the initialization, which can be either {w(T )
i } or z(T ).

For the independent instance variable denoising process (No Synchronization), we apply the final
synchronization in the RGB space at the end of the denoising process.

A7.2 Instance Variable Denoising Process

Here, we explore all possible instance variable denoising processes. In these processes, the canonical
space Z is employed to synchronize the outputs of ϵθ(·), ϕ(t)(·, ·) and ψ(t)(·, ·) in the instance spaces.

Following the trajectory 1 shown in part (a) of Figure A10, marked by five red arrows, there are
a total of 25 = 32 possible denoising processes. This includes the independent instance variable
denoising process (No Synchronization), where Fi is not applied at any red arrow. Additionally, the
three representative instance variable denoising processes, Cases 1 to 3, are also included, along with
Cases 7 to 34 which are presented below:

Case 7 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i , ϵθ(Fi(w(t)

i ))))

Case 8 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i ,Fi(ϵθ(Fi(w(t)

i )))))

Case 9 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(Fi(w(t)

i ), ϵθ(w
(t)
i )))

Case 10 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(Fi(w(t)

i ), ϵθ(Fi(w(t)
i ))))

Case 11 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(Fi(w(t)

i ),Fi(ϵθ(w(t)
i ))))

Case 12 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(Fi(w(t)

i ),Fi(ϵθ(Fi(w(t)
i )))))

Case 13 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(w(t)

i , ϵθ(Fi(w(t)
i )))))

Case 14 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(w(t)

i ,Fi(ϵθ(w(t)
i )))))

Case 15 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(w(t)

i ,Fi(ϵθ(Fi(w(t)
i ))))))

Case 16 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(Fi(w(t)

i ), ϵθ(w
(t)
i ))))

Case 17 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(Fi(w(t)

i ), ϵθ(Fi(w(t)
i )))))

Case 18 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(Fi(w(t)

i ),Fi(ϵθ(w(t)
i )))))

Case 19 : w(t−1)
i = ψ(t)(w

(t)
i ,Fi(ϕ(t)(Fi(w(t)

i ),Fi(ϵθ(Fi(w(t)
i ))))))

Case 20 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), ϕ(t)(w
(t)
i , ϵθ(w

(t)
i )))

Case 21 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), ϕ(t)(w
(t)
i , ϵθ(Fi(w(t)

i ))))

Case 22 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), ϕ(t)(w
(t)
i ,Fi(ϵθ(w(t)

i ))))

Case 23 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), ϕ(t)(w
(t)
i ,Fi(ϵθ(Fi(w(t)

i )))))

Case 24 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), ϕ(t)(Fi(w(t)
i ), ϵθ(w

(t)
i )))

Case 25 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), ϕ(t)(Fi(w(t)
i ),Fi(ϵθ(w(t)

i ))))

Case 26 : w(t−1)
i = Fi(ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i ,Fi(ϵθ(w(t)

i )))))

Case 27 : w(t−1)
i = ψ(t)(Fi(w(t)

i ),Fi(ϕ(t)(w(t)
i , ϵθ(w

(t)
i ))))

Case 28 : w(t−1)
i = ψ(t)(Fi(w(t)

i ),Fi(ϕ(t)(w(t)
i , ϵθ(Fi(w(t)

i )))))

Case 29 : w(t−1)
i = ψ(t)(Fi(w(t)

i ),Fi(ϕ(t)(w(t)
i ,Fi(ϵθ(w(t)

i )))))
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Case 30 : w(t−1)
i = ψ(t)(Fi(w(t)

i ),Fi(ϕ(t)(w(t)
i ,Fi(ϵθ(Fi(w(t)

i ))))))

Case 31 : w(t−1)
i = ψ(t)(Fi(w(t)

i ),Fi(ϕ(t)(Fi(w(t)
i ), ϵθ(w

(t)
i ))))

Case 32 : w(t−1)
i = Fi(ψ(t)(w

(t)
i ,Fi(ϕ(t)(w(t)

i , ϵθ(w
(t)
i )))))

Case 33 : w(t−1)
i = ψ(t)(Fi(w(t)

i ),Fi(ϕ(t)(Fi(w(t)
i ),Fi(ϵθ(w(t)

i )))))

Case 34 : w(t−1)
i = Fi(ψ(t)(w

(t)
i ,Fi(ϕ(t)(w(t)

i ,Fi(ϵθ(w(t)
i )))))).

Similarly, four cases are derived from the trajectory 2 shown in part (c) of Figure A10. These
correspond to Cases 35 to 38 below:

Case 35 : w(t−1)
i = ψ(t)(w

(t)
i , fi(ϕ

(t)(A({gj(w(t)
j )}),A({gj(ϵθ(w(t)

j ))}))))

Case 36 : w(t−1)
i = ψ(t)(w

(t)
i , fi(ϕ

(t)(A({gj(w(t)
j )}),A({gj(ϵθ(Fi(w(t)

j ))})))))

Case 37 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), fi(ϕ
(t)(A({gj(w(t)

j )}),A({gj(ϵθ(w(t)
j ))}))))

Case 38 : w(t−1)
i = ψ(t)(Fi(w(t)

i ), fi(ϕ
(t)(A({gj(w(t)

j )}),A({gj(ϵθ(Fi(w(t)
j ))}))))).

The trajectory 3 shown in part (e) of Figure A10 accounts for two cases, corresponding to Case 39
and Case 40 below:

Case 39 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}), ϕ(t)(A({gj(w(t)

j )}),A({gj(ϵθ(w(t)
j ))}))))

Case 40 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}), ϕ(t)(A({gj(w(t)

j )}),A({gj(ϵθ(Fi(w(t)
j )))})))).

Lastly, the trajectory 4 shown in part (g) of Figure A10 includes Cases 41 to 48 below:

Case 41 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(w(t)

j , ϵθ(w
(t)
j )))})))

Case 42 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(w(t)

j , ϵθ(Fi(w(t)
j ))))})))

Case 43 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(w(t)

j ,Fi(ϵθ(w(t)
j ))))})))

Case 44 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(w(t)

j ,Fi(ϵθ(Fi(w(t)
j )))))})))

Case 45 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w(t)

j ), ϵθ(w
(t)
j )))})))

Case 46 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w(t)

j ), ϵθ(Fi(w(t)
j ))))})))

Case 47 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w(t)

j ),Fi(ϵθ(w(t)
j ))))})))

Case 48 : w(t−1)
i = fi(ψ

(t)(A({gj(w(t)
j )}),A({gj(ϕ(t)(Fi(w(t)

j ),Fi(ϵθ(Fi(w(t)
j )))))}))).

A7.3 Canonical Variable Denoising Process

Here, we present all possible canonical variable denoising processes. Due to the absence of noise
prediction in the canonical space, a process first redirects canonical variable z(t) to the instance
spaces where a subsequence of operations ϵθ(·), ϕ(t)(·, ·) and ψ(t)(·, ·) are computed.

We exclude the application of Fi to w
(t)
i ← fi(z

(t)), as the variable remains unchanged after the
operation. Therefore, applying Fi to w

(t)
i ← fi(z

(t)) for the inputs of ϵθ(·), ϕ(t)(·, ·) and ψ(t)(·, ·)
is not considered.

Case 4 which belongs to the trajectory 3, is visualized in part (f) of Figure A10. Case 5 and Case 49
derive from the trajectory 4 which are shown in part (h) of Figure A10.

Case 49 : z(t−1) = ψ(t)(z(t),A({gi(ϕ(t)(fi(z(t)),Fi(ϵθ(fi(z(t)))))})))

In the trajectory 1, 22 = 4 cases are possible, as shown in part (b) of Figure A10. This includes Case
6 along with Cases 50 to 52 below:
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Case 50 : z(t−1) = A({gi(ψ(t)(fi(z
(t)), ϕ(t)(fi(z

(t)),Fi(ϵθ(fi(z(t)))))))})
Case 51 : z(t−1) = A({gi(ψ(t)(fi(z

(t)),Fi(ϕ(t)(fi(z(t)), ϵθ(fi(z(t)))))))})
Case 52 : z(t−1) = A({gi(ψ(t)(fi(z

(t)),Fi(ϕ(t)(fi(z(t)),Fi(ϵθ(fi(z(t))))))))}).

Lastly, trajectory 2, shown in part (d) of Figure A10, encompasses one possible case, corresponding
to Case 53:

Case 53 : z(t−1) = A({gi(ψ(t)(fi(z
(t)), fi(ϕ

(t)(z(t),A({gi(ϵθ(fi(z(t))))})))))}).

A7.4 Combined Variable Denoising Process

In this section, we introduce combined variable denoising processes where both instance and canonical
variables are denoised. This process synchronizes instance variables and a canonical variable by
aggregating the unprojected instance variables and the canonical variable in the canonical space.

For clarity, we introduce additional operations below. δZ(·) takes a variable in the canonical space
z ∈ Z , projects it into the instance spaces, predicts noises in those spaces, and aggregates them back
in the canonical space after the unprojection. Φ(t)

Z (·) then computes Tweedie’s formula [43] based on
the noise term computed by δZ(·).

δZ(z) = A({gi(ϵθ(fi(z)))}) (12)

Φ
(t)
Z (z) = ϕ(t)(z, δ(z)). (13)

Similarly, given a set of variables in the instance spaces {wi}, the following operators aggregate the
unprojected outputs of ψ(t)(·, ·), ϵθ(·) and ϕ(t)(·, ·) in the canonical space:

Ψ
(t)
Wi

({wi}) = A({gi(ψ(t)(w
(t)
i , ϕ(t)(w

(t)
i , ϵθ(w

(t)
i ))))}) (14)

δWi
({wi}) = A({gi(ϵθ(w(t)

i ))}) (15)

Φ
(t)
Wi

({wi}) = A({gi(ϕ(t)(w(t)
i , ϵθ(w

(t)
i )))}) (16)

We present joint variable denoising cases on the representative cases discussed in Section A7:

Case 54 : w(t−1)
i = ψ(t)(w

(t)
i , ϕ(t)(w

(t)
i , fi(A({δWi({w

(t)
i }), δZ(z(t))}))))

Case 55 : w(t−1)
i = ψ(t)(w

(t)
i , fi(A({Φ(t)

Wi
({w(t)

i }),Φ
(t)
Z (z(t))})))

Case 56 : w(t−1)
i = fi(A({Ψ(t)

Wi
({w(t)

i }), z(t−1)}))

Case 57 : z(t−1) = ψ(t)(z(t), ϕ(t)(z(t),A({δZ(z(t)), δWi
({w(t)

i })})))

Case 58 : z(t−1) = ψ(t)(z(t),A({Φ(t)
Wi

({fi(z(t))}),Φ(t)
Wi

({w(t)
i })})

Case 59 : zt−1 = A({Ψ(t)
Wi

({fi(z(t))}),A({gi(w(t−1)
i )})}).

Cases 54 to 59 correspond to the combined variable denoising processes from Cases 1 to 6, respec-
tively. In each of the above cases, we highlight the terms already present in the original representative
case in orange and newly added variable to be synchronized together in purple.

A7.5 Quantitative Results

In Table A10, we present the quantitative results of the 60 diffusion synchronization processes listed
above. We follow the same toy experiment setup described in both Section 3.4.1 and Section A2.1.
As outlined in Section A7.1, for all instance variable denoising processes, including the independent
denoising case (No Synchronization), we perform the final synchronization at the end of the denoising
process. For n-to-1 projection, we utilize M = 10 multiplane images as done in Section 3.4.3.

We report the quantitative results of all cases in Table A10. The results align with the observations of
Table 1. In the 1-to-1 projection scenario, most diffusion synchronization processes exhibit similar
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performances. Except for Case 55 and Case 56, the combined variable denoising processes (Cases 54
to 59) show suboptimal performances with FID [19] scores over 100. This indicates that denoising
either instance variables or a canonical variable is sufficient to produce satisfactory and consistent
results.

When it comes to the 1-to-n projection scenario, Case 2 and Case 5 outperform the others, with some
exceptions such as Case 11 and Case 35. This trend is also consistent with the results in Section 3.4.1,
highlighting the effectiveness of synchronizing the outputs of Tweedie’s formula [43] ϕ(t)(·, ·) even
when compared to more complex diffusion synchronization processes.

Lastly, in the n-to-1 projection scenario, Case 2 (SyncTweedies) is the only one that outperforms
the others across all metrics.

In conclusion, as shown in Table A10, Case 2 (SyncTweedies) distinctly exhibits superior perfor-
mance across various projection scenarios, outperforming even more convoluted cases.

Table A10: A quantitative comparison of all cases in ambiguous image generation. KID [5] is
scaled by 103. For each column, we highlight the row whose value is within 95% of the best.

CLIP-A [39] ↑ CLIP-C [39] ↑ FID [19] ↓ KID [5] ↓

1-to-1 Projection

No Sync. 28.49 62.0 102.14 51.72
Case 1 30.26 64.45 85.55 31.95

Case 2 (SyncTweedies) 30.35 64.52 85.36 31.82
Case 3 30.34 64.46 85.31 31.57
Case 4 30.28 64.47 85.37 32.44
Case 5 30.36 64.43 85.56 32.1
Case 6 30.3 64.49 84.75 31.29
Case 7 30.33 64.51 84.6 31.93
Case 8 30.27 64.49 85.03 32.08
Case 9 29.46 62.17 97.48 44.21

Case 10 30.36 64.68 84.79 31.44
Case 11 30.31 64.48 85.81 32.26
Case 12 30.31 64.53 84.48 31.56
Case 13 30.33 64.46 85.83 32.35
Case 14 30.33 64.57 85.69 32.36
Case 15 30.35 64.63 85.6 32.17
Case 16 30.34 64.57 85.9 32.55
Case 17 30.32 64.5 85.66 32.3
Case 18 30.31 64.63 85.48 32.35
Case 19 30.33 64.53 85.18 31.38
Case 20 29.91 63.48 92.18 38.44
Case 21 30.3 64.41 85.54 32.18
Case 22 30.33 64.61 85.99 32.41
Case 23 30.31 64.59 85.17 31.77
Case 24 30.06 63.91 91.82 37.62
Case 25 30.3 64.46 85.41 32.22
Case 26 30.36 64.59 84.98 31.93
Case 27 30.31 64.49 84.89 31.8
Case 28 30.33 64.42 85.34 32.61
Case 29 30.33 64.55 85.93 32.29
Case 30 30.33 64.51 85.03 31.72
Case 31 30.32 64.42 85.95 32.91
Case 32 30.33 64.5 85.78 32.35
Case 33 30.34 64.63 85.77 32.4
Case 34 30.37 64.66 84.99 31.84
Case 35 30.36 64.59 85.39 31.64
Case 36 30.34 64.55 84.59 31.8
Case 37 30.33 64.63 85.21 31.84
Case 38 30.39 64.56 84.75 31.82
Case 39 30.31 64.55 85.56 32.67
Case 40 30.29 64.55 85.44 32.17
Case 41 30.31 64.48 85.53 32.02
Case 42 30.35 64.47 85.62 32.68
Case 43 30.31 64.55 85.4 32.09
Case 44 30.3 64.51 86.13 32.55
Case 45 30.32 64.42 85.44 32.25
Case 46 30.34 64.51 85.59 32.67
Case 47 30.32 64.52 85.06 31.76
Case 48 30.35 64.57 84.95 31.96
Case 49 30.3 64.48 85.46 32.43
Case 50 30.31 64.46 86.49 32.97
Case 51 30.3 64.47 85.83 32.41
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CLIP-A [39] ↑ CLIP-C [39] ↑ FID [19] ↓ KID [5] ↓

Case 52 30.35 64.62 86.05 32.44
Case 53 30.28 64.45 85.38 32.21
Case 54 21.27 50.03 422.05 491.69
Case 55 30.09 64.26 87.04 34.26
Case 56 30.33 64.4 87.26 33.06
Case 57 21.28 49.99 420.29 495.9
Case 58 27.02 60.08 113.68 57.55
Case 59 26.88 60.05 116.9 60.24

1-to-n Projection

No Sync. 27.64 56.97 132.6 107.41
Case 1 26.12 54.97 231.23 212.39

Case 2 (SyncTweedies) 30.23 60.87 110.73 76.25
Case 3 29.96 60.49 118.53 86.38
Case 4 25.86 54.29 254.74 250.76
Case 5 30.29 61.0 108.77 74.51
Case 6 30.0 60.55 117.64 84.84
Case 7 28.41 58.41 195.37 186.39
Case 8 25.79 54.21 271.32 278.01
Case 9 28.77 57.56 129.27 99.92

Case 10 30.11 60.91 115.29 84.28
Case 11 30.2 60.84 110.38 76.53
Case 12 29.92 60.8 121.93 86.54
Case 13 29.93 60.84 121.64 86.13
Case 14 29.3 59.91 163.26 127.25
Case 15 29.53 60.29 158.83 140.3
Case 16 30.05 60.45 117.48 86.86
Case 17 30.1 60.74 118.56 88.96
Case 18 30.18 60.77 113.1 79.59
Case 19 30.17 60.79 117.68 85.37
Case 20 29.45 59.41 119.8 87.59
Case 21 30.06 60.76 115.39 82.83
Case 22 30.02 60.58 116.08 83.42
Case 23 30.06 60.69 117.55 84.91
Case 24 29.45 59.43 121.43 89.89
Case 25 29.94 60.45 118.35 86.34
Case 26 30.02 60.55 119.02 86.96
Case 27 29.92 60.45 118.86 86.83
Case 28 30.01 60.52 119.1 86.91
Case 29 29.94 60.54 118.76 85.98
Case 30 29.97 60.52 120.49 89.38
Case 31 29.95 60.45 119.19 86.53
Case 32 30.02 60.62 119.03 86.73
Case 33 29.95 60.52 119.92 87.55
Case 34 29.96 60.54 119.57 87.29
Case 35 30.2 60.84 110.38 76.08
Case 36 29.92 60.8 121.93 86.99
Case 37 29.94 60.45 118.35 86.27
Case 38 30.02 60.55 119.02 86.99
Case 39 29.94 60.45 118.35 86.05
Case 40 30.02 60.55 119.02 87.07
Case 41 29.92 60.45 118.86 86.51
Case 42 30.01 60.52 119.1 86.46
Case 43 29.94 60.54 118.76 86.42
Case 44 29.97 60.52 120.49 89.04
Case 45 29.95 60.45 119.19 86.38
Case 46 30.02 60.62 119.03 87.21
Case 47 29.95 60.52 119.92 87.91
Case 48 29.96 60.54 119.57 87.2
Case 49 29.32 59.98 162.41 126.53
Case 50 30.0 60.62 118.17 85.47
Case 51 29.96 60.53 119.6 87.85
Case 52 30.02 60.62 119.79 87.78
Case 53 30.0 60.62 118.17 85.66
Case 54 21.25 49.99 442.91 538.91
Case 55 25.99 55.43 223.48 200.81
Case 56 25.9 55.22 229.84 210.01
Case 57 21.25 50.02 423.48 501.66
Case 58 28.21 58.01 151.01 122.97
Case 59 28.05 57.96 152.2 123.95

n-to-1 Projection

No Sync. 28.26 61.75 111.11 57.24
Case 1 21.28 49.94 405.82 496.98

Case 2 (SyncTweedies) 29.56 63.1 96.3 40.91
Case 3 21.58 50.58 243.23 151.11
Case 4 21.33 50.05 301.2 233.11
Case 5 21.09 50.04 289.82 213.45
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CLIP-A [39] ↑ CLIP-C [39] ↑ FID [19] ↓ KID [5] ↓

Case 6 22.28 50.11 329.11 299.11
Case 7 21.76 50.01 422.31 518.33
Case 8 21.72 50.0 426.69 530.85
Case 9 22.81 51.54 192.3 112.63

Case 10 25.05 56.05 158.99 92.29
Case 11 25.67 54.72 288.88 278.59
Case 12 25.67 56.48 160.32 92.54
Case 13 25.11 53.61 260.91 223.48
Case 14 24.29 52.09 344.55 379.52
Case 15 25.38 53.72 259.18 221.03
Case 16 27.93 58.75 198.49 144.28
Case 17 25.02 53.69 194.6 130.03
Case 18 25.32 53.76 315.92 329.26
Case 19 24.65 53.49 212.36 157.81
Case 20 21.53 50.71 236.09 157.04
Case 21 22.47 52.48 189.73 104.92
Case 22 23.74 54.67 154.53 77.4
Case 23 22.75 53.44 174.95 87.28
Case 24 21.63 50.83 206.25 110.93
Case 25 24.72 57.52 130.55 60.76
Case 26 21.53 50.81 211.99 122.67
Case 27 21.53 50.4 246.63 161.28
Case 28 21.44 50.9 253.72 157.43
Case 29 21.28 50.75 249.3 151.45
Case 30 21.58 50.84 249.85 152.37
Case 31 21.69 50.63 233.72 144.35
Case 32 21.89 50.68 243.65 160.12
Case 33 22.22 51.04 208.49 117.23
Case 34 22.01 50.48 257.02 171.18
Case 35 25.72 54.78 289.98 279.62
Case 36 25.73 56.58 160.42 93.2
Case 37 24.79 57.46 131.86 61.08
Case 38 21.52 50.86 211.71 121.06
Case 39 24.77 57.45 130.03 59.89
Case 40 21.58 50.88 212.99 122.21
Case 41 21.52 50.5 247.4 161.85
Case 42 21.46 50.86 253.6 157.02
Case 43 21.31 50.67 249.7 151.85
Case 44 21.54 50.85 251.18 154.49
Case 45 21.65 50.54 237.56 147.55
Case 46 21.94 50.69 244.4 161.12
Case 47 22.27 51.05 206.73 114.38
Case 48 22.05 50.47 258.46 174.1
Case 49 21.13 50.05 280.71 195.28
Case 50 22.73 50.03 350.36 322.78
Case 51 22.29 50.04 354.31 332.85
Case 52 22.31 50.06 349.66 322.96
Case 53 22.74 50.06 349.41 321.65
Case 54 20.77 50.06 419.46 495.55
Case 55 22.01 50.15 270.14 192.31
Case 56 21.8 50.1 291.59 217.05
Case 57 21.56 50.03 405.75 477.82
Case 58 26.32 58.49 124.28 66.34
Case 59 26.52 59.09 108.41 46.07
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